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ABSTRACT 
Prompt detection of Atrial Fibrillation is crucial to avert the serious 
complications linked to this arrhythmia. The diagnosis obtained from 
ECG-Holter Monitoring is unreliable unless the arrhythmia occurs during 
the course of these examinations. The paper presents a novel and robust 
methodology for the prediction and diagnosis of Atrial Fibrillation, 
employing Heart Rate Variability analysis of a patient, grounded in the 
most advanced techniques of the statistical mechanics of complex 
disordered systems, and suitable for integration into clinical practice. The 
methodology has also employed Artificial Intelligence (following an 
adequate period of Machine Learning) to verify the results via a 
secondary, independent process. The research is an observational study 
involving several thousand individuals who underwent experimental heart 
rate monitoring and subsequent variability analyses. Among the 
numerous markers evaluated in this analysis, four of them demonstrate 
the ability to detect and diagnose fibrillation with high sensitivity but 
limited specificity, and only if AFIB occurs during the monitoring period. 
Notably, one indicator, Shannon Entropy, exhibits exceptional 
performance by effectively detecting Atrial Fibrillation with both high 
sensitivity and specificity, and even if episodes occurred in the recent or 
distant past, demonstrating a significant "memory effect”. This fact 
provides clinicians with an innovative approach for detecting and or 
predicting this important arrhythmia, even in the absence of ECG analysis, 
by solely monitoring the patient's heart rate over a 24-hour period. This 
approach substantially enhances the detection of AFIB episodes and 
facilitates the development of preventive measures and prophylactic 
therapies to mitigate the adverse effects of the arrhythmia. 
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1. Introduction 
The efficacy of Heart Rate Variability (HRV) analysis 
for the early detection of cardiac pathologies has 
been demonstrated generally1, along with the 
significance of the maximal entropy principle in the 
temporal correlations of HRV2. This study focuses 
on a specific cardiac condition, atrial fibrillation 
(AFIB), with the objective of identifying the most 
appropriate Heart Rate Variability (HRV) parameters 
capable of accurately diagnosing or predicting 
AFIB for direct implementation in clinical settings. 
and to surpass the limitations of current AFIB 
detection methods that  predominantly depend on 
the patient's ECG readings. 
 

Due to its propensity to trigger cardiovascular 
events3-7  and subsequent cognitive decline8, AFIB 
is a prevalent cardiac arrhythmia with potentially 
significant health consequences if not identified 
early and managed with preventive measures to 
reduce the associated risks. The potential 
development of blood clotting during the irregular 
rhythm of AFIB may result in subsequent cerebral 
strokes, or similar events, following the conclusion 
of the AFIB episode.  
 

According to the most recent ESC Guidelines9, 
AFIB is associated with a fivefold increased risk of 
ischemic stroke. Preventing stroke through oral 
anticoagulation is a critical aspect of managing 
patients with atrial fibrillation. The administration of 
anticoagulants - particularly the contemporary 
class of New Oral Anticoagulants (NOA) - 
significantly diminishes this risk. However, it is 
unfeasible to envisage the treatment of entire 
populations with lifelong anticoagulant therapy, 
due to the high costs associated with NOAs and 
their potential side effects, including bleeding 
events and alterations in vital clinical parameters.  
 

Therefore, it is essential to differentiate individuals 
who are legitimately at risk of experiencing sporadic 
or recurrent AFIB episodes from those who are not. 
Unfortunately, the principal diagnostic techniques 
for AFIB, namely the ECG (electrocardiogram) and 
the 24-hour Holter Monitoring of cardiac activity, 
possess a limited probability of detecting the 
arrhythmia, as it must occur precisely during the 
testing period to be identified.  
 

An alternative methodology capable of assessing 
the risk of AFIB in an individual should therefore be 
viewed as advantageous, both for increasing the 
detection of AFIB cases and for differentiating 

patients who most require anticoagulant therapy 
from others. 
 

The primary objectives of this paper are therefore:  
 

 To demonstrate that HRV analysis can provide a 
novel methodology for the early detection of AFIB 
by utilizing several indicators commonly employed 
in this form of analysis.10  
 

 To consider the HRV-based methodology outlined 
above as a complementary or integrative approach 
to the traditional ECG-based method, thereby 
enhancing the identification of AFIB episodes.  
 

 To present clinicians with a simple and effective 
tool - the Shannon Entropy - whose values, 
obtained from straightforward 24-hour heart rate 
recordings acquired through wearable cardio-
frequency monitors, can rapidly distinguish 
individuals with, or at risk of, AFB from others. 
 

 To enhance the effectiveness of risk stratification 
algorithms for predicting stroke and thromboembolism 
in patients with atrial fibrillation, such as the widely 
used CHA(2)DS(2)-VASc score11 or the Framingham 
Risk Score12 (commonly used for severe coronary 
heart disease) by incorporating the Shannon 
Entropy (ShE) score into the algorithm.  
 

2. Methods 
A total of about 7500 patients were included in the 
study, yielding a net effective count of 7315 valid  
patients after excluding records impacted by 
artifacts or errors in documentation. The patients 
have been divided into the following two groups 
and five subgroups: 
 

 A-Group, comprising 6511 individuals with no 
prior or current episodes of AFIB, divided  into 
two subgroups:  
 

 A1 (1813 subjects) comprising healthy individuals 
(control group), defined by the absence of substantial 
disease and the lack of long-term therapy; 
 

 A2 (4698 subjects A2 (4698 subjects) comprising 
individuals with diverse comorbidities, excluding AFIB. 
 

 B-Group, comprising 804 patients with AFIB , 
divided  into three subgroup as followss: 
 

 B1 (247 patients): individuals with recent episodes 
of AFIB (within days or weeks prior to the HRV test, 
as ascertained from the patients' medical history; 
 

 B2 (227 patients): individuals with a history of atrial 
fibrillation episodes occurred months prior to the 
HRV test, as ascertained from their medical records;  
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 B3 (330 patients):individuals with atrial fibrillation 
episodes identified during the HRV test and 
confirmed by the recorded ECG trace. 
 

The entire methodology employed in the 
development of HRV analysis is outlined in the 
following four steps: 
 

STEP 1: FROM THE PATIENTS TO THE HEART 
RATE TIME SERIES 
All patients have undertaken a 24-hour Heart Rate 
Monitoring (HRM), conducted using Mortara 12-
channel Holter devices and/or high-quality wearable 
cardio-frequency monitors (such as POLAR V800, 
E-MOTION Faros, MINICARDIO HOSAND 
PROFESSIONAL, and similar equipment). From the 
HRM records, the heart rate time series , or RAW 
RR files, have been extracted - where RR represents 
the time interval between two consecutive 
heartbeats - and subsequently decoded, cleaned 
(to remove artifacts and malfunctions), and 
processed to produce RR files consisting of 
approximately 100,000 RR intervals within 24 hours 

for each subject, expressed in milliseconds, and 
prepared for subsequent HRV analysis. 
 

STEP 2: ASSESSING THE PATIENT'S HEART RATE 
VARIABILITY USING A 50-MARKER VECTOR  
Following the preparation of the RR interval files, 
MATLAB-based software has been developed and 
employed to perform a comprehensive HRV 
analysis for each patient. This analysis is based on 
the evaluation of a series of 50 distinct HRV 
indicators, providing a thorough characterization of 
the patient's HRV directly from the recorded RR 
interval data. TABLE 1 lists these indicators, or 
markers, together with their respective definitions. 
From the table, it is evident that the HRV of a 
subject can be characterized by three distinct 
categories of markers: linear markers in the time 
domain, linear markers in the frequency domain 
(obtained using Fast Fourier Transforms (FFT) and 
Autoregressive Methods, and assessed 
independently for Very Low, Low, and High 
Frequency Bands), and non-linear markers. 

 
Table 1: List of hrv markers evaluated from rr "raw" data files 
 

 

MARKER 

(VARIABLE)
UNITS DEFINITIONS

RR or NN interval [ms] Time Interval between two consecutive QRS complexes

Mean RR [ms] The Mean of RR Intervals over a 24 hours period

SDNN [ms] Standard Deviation of RR Intervals  (24h)

Mean HR [b/m] The Mean Heart Rate (24h)

STD-HR [b/m] Standard Deviation of Instantaneous Heart Rate Values (24h)

RMS-SD [ms] Square Root of Mean Square Differences between Successive RR Intervals (24h)

NN50 [n] Number of Successive RR Interval Pairs that Differ > 50 ms (24h)

pNN50 [%] NN50 divieded by the Total Number of RR Intervals (24h)

HRV TIN - Integral of the 24h RR Interval Histogram divided by its Height                               

Baseline TIN [ms] Baseline Width of the RR Interval Histogram (24h)

Mean RR5 [ms] The Mean of the Average NN Intervals over 5 min periods

SDANN [ms] Standard Deviation of the Average NN Intervals over 5 min periods

Peak Frequency [Hz] VLF, LF and HF Band Peak Frequencies, evaluated by FFT and AR Methods

Absolute Power [ms
2
] Absolute Powers of VLF, LF and HF Bands (both FFT and AR)

Relative Power [%] Relative Powers of VLF, LF and HF Bands (both FFT and AR)

Normalized  Power [%] Powers of  LF and HF Bands in Normalized Units [i.e.excluding VLF Band] 

Total Power [ms
2
] Total Power

LF/HF - Ratio Between LF and HF Band Powers

SD1 [ms] Standard Deviation of Poincarè Plot [Rn+1 vs Rn] Orthogonal to the Identity Line 

SD2 [ms] Standard Deviation of  Poincarè Plot [Rn+1 vs Rn] Along  the Identity Line

RPL min [b] Mean Line Length

RPL max [b] Maximum Line Length

REC [%] Recurrence Rate

DET [%] Determinism

ShE _ Shannon Entropy

ApEn _ Approximate Entropy

SampEn _ Sample Entropy

DFA  α1 _ Detrended Fluctuations Analysis: Short Term Fluctuation Slope

DFA  α2 _ DFA:  Long Term Fluctuation Slope

D2 _ Correlation Dimension

BMP [%] "LIFE Potential" or "BARRA-MORETTI Potential"
[4]
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The latter category encompasses the Shannon 
Entropy (ShE)13–18 and several other indicators of 
clinical significance. The three frequency bands 
utilized in the aforementioned FFT are:  HF: 0.16–
0.40 Hz; LF: 0.05–0.15 Hz; and VLF: 0.01–0.04 Hz. 
 

The vector composed of these 50 marker values 
functions as a unique identifier for each individual, 
analogous to a sequence of  their  DNA. However, 
unlike DNA, its components may fluctuate over 
time depending on the individual's age, health 
condition, and general well-being. 
 
STEP 3: GENERATING THE SEQUENCE OF 
MARKER ALARMS  
By comparing the values of the vector components 
above to the average values of the same markers 
in the control subgroup A1 (healthy patients), it is 
possible to identify alarms for each marker, which 
occur whenever a marker's value significantly 
exceeds or falls below the corresponding average 
value of the control group. Moderate or severe 
alarms are triggered for each marker when the 
patient's marker value exceeds or falls below a 
factor of σ or 2σ, respectively (\σ representing the 
standard deviation of the distribution of the 
marker's values around its mean in the control 
group). Indicating in green the absence of alarms, 
in yellow the presence of a moderate alarm, and in 
red the presence of a severe alarm, each vector 
introduced in Step 2 becomes a sequence of 
markers' alarms, distinguished by an alternating 
pattern of green, yellow, and red colors. Within this 
framework, HRV can function as a reliable and 
autonomous diagnostic tool, assuming that the 
distinctive pattern of a pathology can be identified 
through the specific distribution of a patient's 
sequence of marker alarms.  
 
STEP 4: PATHOLOGY IDENTIFICATION FROM 
THE PATIENT'S MARKER ALARMS  
Based on the sequence of the patient's marker 
alarms, it becomes possible to identify the 
presence of a pathology once the characteristic 
alarm pattern associated with the pathology is 
recognized. This paper's primary objective is to 
identify the "AFIB pathology" by establishing its 
characteristic pattern of marker values, which 
appear to be altered (alarms) relative to the normal 
values observed in the control group. 
 

Upon completing the procedures detailed in Steps 
1, 2, and 3, several analyses have been conducted 

to identify the characteristic marker patterns and 
alarms for each of the previously mentioned 
groups and subgroups, aiming to uncover any 
significant clinical findings. The statistical 
significance of these results has been assessed by 
means of standard t-statistics and p-values where 
appropriate, as well as of relevant sensitivity and 
specificity percentages19–36. These analyses also 
incorporated an original graphical evaluation of the 
distribution of marker values within each group, as 
well as their overlap or distinctions between 
groups, to provide an easily interpretable and 
practical tool for clinicians. This graphic will be 
employed in the following section to illustrate the 
primary research findings. 
 
STEP 5: VALIDATION OF THE PATHOLOGY 
IDENTIFICATION BY MEANS OF AI-ASSISTED 
PROCEDURE   
Concurrently with the aforementioned algorithms 
utilizing conventional methods from the statistical 
mechanics of complex disordered systems, an 
Artificial Intelligence (AI) methodology has been 
developed to validate and substantiate the 
previously acquired results.  
 

The RR-files have been directly utilized as inputs for 
a multi-layer feed-forward neural network, which 
has been pre-trained to facilitate patient classification. 
However, before training the network, preliminary 
procedures were carried out to confirm the 
effective number of markers via principal component 
analysis and to implement data augmentation 
owing to the wide scope of the input data. Having 
developed this basis, a machine learning (ML) 
approach has been employed to train the network 
and illustrate its proficiency in accurately classifying 
patients, distinguishing healthy individuals from 
those with atrial fibrillation. 
 

The concordance between AFIB detection using 
the algorithms introduced in stages 1, 2, 3, and 4 
and AFIB detection through AI-based methods 
exceeds 99%.This affirms the growing importance 
of AI in healthcare: in recent years, numerous 
devices and sophisticated algorithms have been 
effectively employed to assist medical professionals. 
One of the main goals of this collaboration 
between humans and machines is to guarantee 
widespread accessibility - particularly in low-
income and remote areas - to medical services, as 
well as to reduce the time needed to achieve a 
diagnosis. Certainly, for AI-driven devices to 
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efficiently analyze large volumes of data and make 
timely precise decisions, they must first undergo 
proper training. The exhaustive machine learning 
methodologies utilized in this study are thoroughly 
described in the aforementioned references 1 and 2.  
 

The aforementioned database, which consists of 
7315 RR 24h-HRM patient records, comprises: 
2214 records provided by the Ascoli Piceno Public 
Hospital between 2016 and 2020 as part of a 
cooperation agreement signed with POLISA and 
within a contract obtained from UNICAL; 1887 
records downloaded by the Physiobank MIT online 
database37  and 3214 patient records generated by 
POLISA's MATCH HRV NETWORK inside the 

Pythagoras Project, which is co-funded by REGIONE 
CALABRIA [see the "Acknowledgements" below].  
 

The amounts and types of files received by each 
source are summarized in Table 2, which is divided 
into three categories: "HP" (Healthy People), which 
refers to patients with no pathologies and no 
ongoing therapies; "AFIB," which refers to patients 
with atrial fibrillation; and "ANY PATHOLOGY BUT 
AFIB," which refers to patients with any pathology 
other than AFIB. 
 
 
 

 
Table 2: Sources of the analyzed rr "raw" data files 
 

 
 

3. Results 
The findings indicate that, although four HRV 
markers demonstrate high sensitivity in detecting 
AFIB episodes - albeit exclusively those occurring 
during the HRM performed for HRV analysis - they 
exhibit limited specificity in diagnosing AFIB. 
Consequently, these four markers will be 
designated as "second-choice AFIB markers." 
However, a fifth marker, Shannon Entropy (ShE), 
appears to provide both high sensitivity and 
specificity in the diagnosis of AFIB. Furthermore, 
the ShE demonstrates a peculiar and atypical 
behavior: it appears capable not only of detecting 
an active AFIB episode occurring during the HRM 
of the HRV test but also of retaining evidence of 
AFIB episodes that took place weeks or months 
earlier. This implicitly encompasses the associated 
risk of recurrent AFIB episodes in the near to 
medium-term future, which correlates 
proportionally with the number of prior AFIB 
episodes. Therefore, the ShE will be designated as 
the "First Choice AFIB Marker." Within this 
framework, the principal research findings can be 
summarized into two key points: the first 
concerning "the 2nd choice AFIB markers" (Sub-
section 3.1), and the second relating to "the 1st 
choice marker" (Sub-section 3.2). Additional 
statistical observations will complete the results 
section (Subsection 3.3).  

3.1 FIRST KEY-POINT: “THE 2nd CHOICE AFIB 
MARKERS” 
These markers include the non-linear variable SD1 
as described in TABLE 1, along with the three linear 
variables pNN50, Mean RR5, and the ratio (RMS-
SD)/(MEAN RR). All these Markers increase their 
values during AFIB episodes. Their behavior is 
shown in details, numerically in TABLE 3, upper 
section, and   graphically in FIGURE 1. 
 

All marker values are normalized to the average 
values observed in healthy individuals to achieve 
dimensionless units; thus, the values in the table 
denote the ratio of the absolute marker values to 
the corresponding average values for healthy 
individuals (HP), specifically those in the A1-Sub-
Group [Control Group]. In this normalization, the 
mean value of the marker for the HP is uniformly 
established at "1," with the range of HP values 
characterized by the Standard Deviation (SD) 
relative to unity, often ranging from a few percent 
to several tenths of a percent. 
 
 
 
 
 
 
 

HP AFIB All Pathologies But AFIB TOTAL

FROM THE ASCOLI PICENO HOSPITAL 756 700 758 2214

FROM THE PHYSIOBANK MIT ON-LINE DATABASE 57 104 1726 1887
FROM THE  MATCH HRV-NETWORK Managed by POLISA 1000 0 2214 3214

GRAND-TOTAL: 1813 804 4698 7315
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Table 3. Typical range of values and their principal statistical characteristics for the markers addressed in the 
1st and  2nd key points 
 

 
 
In Table A , the table's parts are indicated in the 
first column, and the marker names - including the 
AFIB second-choice markers taken into 
consideration in this subsection as well as the first-
choice marker shown in the following subsection 
3.2 - are listed in the second column. Progressing 
from left to right, three sets of columns are 
displayed, corresponding to the A1, A2, and B3 
subgroups of patients in the upper section of the 
table, and to the B1, B2, and B3 subgroups in the 
lower one. Each set of columns is divided into three 
columns, each representing the range of values, 
the mean value, and the standard deviation 
(around the mean) of the markers for each 
subgroup, respectively.  
 

The measured results for the four 2nd choice 
markers are subsequently presented in a more 
clear and practical graphical format in FIGURE 1. 
The four markers mentioned above are depicted 
within adjacent, distinct vertical blocks. Within each 
block, the vertical bars depict the complete 
distribution of marker values among patients in the 
A1, A2, and B3 subgroups. In contrast, the B1 and 
B2 subgroups are not depicted, as they lack 
members because they exhibited no significant 
alterations in the values of the four markers for 
patients within these categories.  
 

Although these four markers seem adequately 
capable of identifying the presence of AFIB, two 
main obstacles limit the implementation of these 
markers in clinical practice:  

 The markers are capable only of detecting 
ongoing AFIB episodes, that is, episodes occurring 
during the  HRM (precisely as occurs with ECG and 
conventional Holter Monitoring), and do not 
appear to possess the ability to assess previous 
AFIB episodes (the patients in the B1 and B2 
categories do not show changes for these markers, 
as mentioned earlier) 
 
Due to the apparent overlap in the range of values 
presented in the second and third sets of columns 
in Table 3 [or, visually, in the corresponding A1, A2, 
and B3 vertical bars in Figure 1], most of the values 
for these four markers are shared across numerous 
other pathologies (A2) and, to some extent, with 
the Healthy People Subgroup (A1). For instance, an 
SD1 Marker value of 1.23 is detected in the A1 and 
A2 populations, as well as in the B3 population. 
Therefore, the specificity of these markers for AFIB 
detection seems to be relatively limited, except for 
the marker values within the uppermost zone of the 
B3 vertical bars in Figure 1, which will be more 
precisely detailed in the subsequent subsection 3.3. 
 
 
 
 
 
 
 
 
 

Range of 

values

Average 

Value

Standard 

Deviation

Range of 

values

Average 

Value

Standard 

Deviation

Range of 

values

Average 

Value

Standard 

Deviation

RMS-SD / Mean RR 0.38-1.71 1,00 0,33 0.38-3.14 1.76 0.69 1.23-2.86 2.05 0.41

pNN50 0.26-1.30 1,00 0.26 0.26-2.14 1.20 0.47 1.53-4.05 2.79 0.63

SD1 0.36-1.62 1,00 0.31 0.36-3.87 0.99 0.88 0.96-2.51 1.73 0.39

VN(MEAN)RR5 0.43-1.28 1,00 0.21 0.21-2.19 1.20 0.50 1.23-2.51 1.87 0.32

ShE 0.93-1.17 1,00 0.06 0.93->2 1.5 0.3

Range of 

values

Average 

Value

Standard 

Deviation

Range of 

values

Average 

Value

Standard 

Deviation

Range of 

values

Average 

Value

Standard 

Deviation

Shannon Entropy 0.79-0.93 0.86 0.03 0.71-0.87 0.79 0.04 0.02-0.78 0.40 0.19

NOTE:

L
O

W
E

R
 

S
E

C
T

IO
N

HRV MARKER

B1 SUBGROUP B2 SUBGROUP B3 SUBGROUP

Alla values are dimensionless as they are divided by the corresponding average value of the A1 (Healthy) Group.

U
P

P
E

R
 S

E
C

T
IO

N HRV MARKER

A1 SUBGROUP A2 SUBGROUP B3 SUBGROUP

see below
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Figure 1: Spreading of the 2nd choice markers values for different sub-groups of patients 
 

3.2 SECOND ITEM: THE 1ST CHOICE AFIB 
MARKER: THE SHANNON ENTROPY (SHE) 
The impressive performance of the ShE in AFIB 
detection is demonstrated in the preceding TABLE 
3, lower section, in numerical format, and in 
FIGURE 2, in graphical format, utilizing the same 
presentation style as that used for the markers in 
Figure 1. The units on the y-axis are once again 
normalized relative to the mean ShE value 
observed in healthy individuals. Specifically, the y-
axis value indicates the ratio of the ShE value 
obtained for the subject under investigation to the 
average ShE value measured across subjects within 
the A1 cohort. The sole significant distinction 
between Figures 1 and 2 is that all subgroups B1, 
B2, and B3 are now comprehensively integrated 
and adequately represented in Figure 2.  
 

The results depicted in the figure possess 
substantial clinical significance for the diagnosis of 
AFIB, as they categorize the entire patient 
population into two distinct, well-defined groups: 
individuals with a ShE normalized value below 0.93 

and those with a value equal to or exceeding 0.93. 
This signifies that: 
 

 If a patient demonstrates a normalized ShE value 
of 0.93 or higher (graphically positioned above the 
horizontal dashed line), indicating a level exceeding 
93% of the minimum ShE value classified as 
"normal", the patient is neither suffering from AFIB 
nor at considerable risk of future AFIB episodes. 
Therefore, the patient is currently ineligible for 
preventative measures targeting AFIB-related 
problems. More specifically, if the ShE value lies 
within the range of 0.93 to 1.16, the patient is 
regarded as healthy or potentially impacted by 
conditions not associated with AFIB. If the value 
surpasses 1.16, the patient is considered unhealthy 
and is influenced by underlying conditions other 
than AFIB. including likely carcinomas, congestive 
cardiac failures, severe neurological disorders, and 
others,  but the clinical significance of elevated ShE 
values is beyond the scope of this study. 
 

 If a patient's normalized ShE value falls below 
0.93 (below the horizontal dashed line), indicating 
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less than 93% of the minimal "normal" ShE value, 
the patient is highly likely to experience episodes 
of atrial fibrillation (AFIB). Consequently, the 
patient is eligible for prophylactic treatments (e.g., 
non-vitamin K antagonist oral anticoagulants, or 
NOACs) to reduce the risk of AFIB-associated 
complications. More specifically:  
 

 If the ShE value is within the range of 0.86-0.93, 
it indicates that the patient most likely experienced 
symptomatic or asymptomatic atrial fibrillation 
episodes in the distant past (one or more months prior).  
 

 If the value falls within the range of 0.78 to 0.86, 
it suggests that the patient likely experienced AFIB 

episodes in the recent past (days or weeks) and/or 
in the distant past.  
 

 If the value decreases between 0.70 and 0.78, 
the patient experienced AFIB episodes either in 
the recent past or during the 24-hour HRM 
recording during the HRV analysis.  
 

If the value is below 0.78, the patient 
demonstrated episodes of AFIB during the 24-hour 
HRM recording conducted for the HRV test. 
 
 

 

 
 

Figure 2: Spreading of the she measured values for the five sub-groups of patients 
 
As depicted in Figure 2, the two main limitations of 
the prior markers presented in sub-section 3.1 have 
been resolved, and the use of ShE in clinical 
practice for AFIB prediction and detection is now 
prepared for deployment; indeed: 
 

 The ShE is capable not only of detecting AFIB 
episodes occurring during the HRM but also of 
demonstrating a notable "memory effect" concerning 

AFIB episodes that took place in the recent (B2-
Subgroup) or distant (B1-Subgroup) past. When a 
patient exhibits a ShE value within the range 
corresponding to one of the B Subgroups, even if 
no AFIB episodes are documented during the 
HRM, it is crucial to evaluate the likelihood of future 
AFIB occurrences and to consider initiating preventive 
treatments to reduce AFIB-associated risks.  
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 Despite the limited specificity of the secondary 
AFIB markers in Subsection 3.1, the ShE 
demonstrates both high sensitivity and specificity. 
This assertion is visually corroborated by Figure 2, 
which clearly shows that the region occupied by 
the ShE values in AFIB conditions is distinctly and 
entirely separated from the areas associated with 
the ShE values of healthy individuals and/or those 
with other pathologies, as further quantified in the 
subsequent subsection 3.3. 
 

For the reasons outlined above, the ShE should be 
considered the primary diagnostic tool for AFIB, 
offering clinicians a valuable means to distinguish 
individuals at risk of AFIB from others. Once the 
ShE drops below 93% of the average ShE value 
observed in healthy individuals, atrial fibrillation 
can be accurately diagnosed or anticipated. In 
other words, low ShE values appear to be a 
prerequisite for the occurrence of AFIB episodes, 
and the lower the ShE value, the greater the 
probability of AFIB episodes.  
 

3.3 ADDITIONAL STATISTICAL OBSERVATIONS 
A. P-VALUE: The single p-value of the entire B 
group of patients compared to the entire A group 
has been taken into consideration because the 
current paper is solely concerned with the 
detection of the AFIB. The p-value for the 2nd 
choice markers was p<0.05 while for the ShE the p-
value was <0.001, or nearly zero. Because Groups 
A and B were clearly split in Figure 2, this was also 
visually understandable. and consistent with the 
amount of degrees of freedom (about 800) because 
of the large number of patients examined, which is 
uncommon in these kinds of investigations. 
 

B. SENSITIVITY AND SPECIFICITY: TABLE 4 presents 
the sensitivity and specificity values for both the 
primary and secondary markers previously 

examined. For the second choice markers, TABLE 
4 indicates that their sensitivity in AFIB detection is 
satisfactory. (σ > 95%), resulting in a very low 
proportion of  "false negatives FN”" (FN = 1 – σ < 
5%). However, due to the significant overlap in the 
range of values already observed in the second and 
third columns of Table 3 and in Figure 1, most of 
the high values of these four markers are also 
present in numerous other pathologies and 
consequently, the specificity of these markers for 
AFIB detection appears to be quite limited., with s 
values in the range 25-33%, and therefore an high 
percentage of “False Positive” [FP = 1-s], which is 
the range 67-75%.. The four markers show an 
appropriate specificity in AFIB identification only 
within the narrow range of marker values that 
surpass the top limit of the range of values 
indicated by the marker for the Subgroup A2  
(Table 4, right section)., with s values in the range 
65%-70%  and  a percentage of “False Positive” 
[FP = 1-s],   in the range 30%-35%. 
 

For those the first choice marker is concerned, 
when applied in clinical practice, ShE appears to 
demonstrate both high diagnostic sensitivity (σ 
>90%), resulting in a very low percentage of false 
negatives (FN = 1 - σ < 1%), and  very high 
diagnostic specificity (s>99.9% ) leading to a very 
low percentage of false positives (FP = 1 - s ≤ 
0.1%). This assertion is supported by Figure 2, 
which clearly demonstrates that the region 
occupied by the ShE values in AFIB conditions is 
distinctly separated from the areas associated with 
the ShE values of healthy individuals and/or those 
affected by other pathologies: once the ShE value 
falls below 93% of the average ShE value observed 
in healthy individuals, AFIB can be reliably 
diagnosed or predicted. 
 

 
TABLE 4: Sensitivity σ and specificity s  of the 1st and 2nd choice markers for AFIB detection 
 

 

MARKER 

VALUE

MARKER 

VALUE

1st CHOICE 

MARKERS
ShE  > 99%  < 1% <0,93  > 99,9%  < 0,1% ≥0.93  > 99,9%  < 0,1%

RMS-SD / 

Mean RR
 > 95%  < 5% ≤3.32  < 30%  > 70%  >3.22 > 65% < 35%

pNN50  > 95%  < 5% ≤2.20  < 33%  > 67%  >2.20 > 69% < 31%

SD1  > 95%  < 5% ≤3.95  < 28%  > 72%  >3.95 > 67% < 33%

VN(MEAN)RR5  > 95%  < 5% ≤2.23  < 25%  > 75%  >2.23 > 70% < 30%

2nd CHOICE 

MARKERS

MARKER 

TYPPE 
HRV INDEX

SENSITIVITY  "σ" SPECIFICITY  "s"

σ
FALSE 

NEGATIVE
s

FALSE 

POSITIVE
s

FALSE 

POSITIVE
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Some concluding remarks based on the thorough 
analysis of the RR data files are as follows:  
 

 No significant differences in the ShE values have 
been observed between males and females. 
 

 Short-duration AFIB episodes lasting less than 6 
minutes did not modify the She values: this finding 
seems to endorse the hypothesis that brief 
episodes of AFIB are inherently less hazardous than 
prolonged episodes in relation to the likelihood of 
precipitating a cardiovascular event.  
 

 The alterations in SHE values are inadequate to 
differentiate between Atrial Fibrillation and Flutter, 
which, from this standpoint, may be regarded as 
the same clinical entity.  
 

4 Discussion 
ShE is the sole marker exhibiting substantially 
below-normal levels in cases of AFIB, whereas all 
other analyzed 49 markers remain unchanged or 
exhibit rapid increases. The same SHE values, 
when associated with other pathologies (including 
major conditions such as carcinomas, congestive 
heart failures, genetic neuropathies, etc.), tend to 
elevate and do not diminish. This unexpected 
finding adds to the ongoing important discourse 
concerning the connection between physics and 
information: the operational equivalence of 
information gain and entropy reduction has been 
widely acknowledged. Nonetheless, the notion 
that a subjective measure such as information 
could influence the "objective" thermodynamic 
properties of the system continues to be a matter 
of considerable debate. Nevertheless, it is difficult 
to deny that the process of information acquisition 
can be directly associated with the ability to 
perform effective tasks. Consequently, questions 
concerning thermodynamics, the second law, and 
the arrow of time have become intertwined with a 
longstanding dilemma: the problem of 
measurements in quantum physics. The specter of 
information casts a shadow over the sciences. 
Thermodynamics, the foundation of statistical 
mechanics, the quantum theory of measurement, 
the physics of computation, and numerous subjects 
within the disciplines of dynamical systems, 
molecular biology, genetics, and computer science 
all revolve around the shared concept of information. 
Well-defined indications exist concerning the 
significance of information within the domain of 
physics, as well as its function as a bridge between 

the natural sciences and the science of computation. 
Furthermore, for individuals aiming to attain 
proficiency in Machine Learning (ML) within the 
artificial Intelligence (AI) domain, understanding 
Shannon’s Entropy is crucial, as ShE forms the basis 
of functions that comprise the essential tools for an 
ML practitioner [1,2]. Participating in this intricate 
debate surpasses the scope of this article; 
consequently, only a few concise considerations will 
be offered solely to promote new interdisciplinary 
perspectives between physics and medicine.  
 

The ShE (X) is the total amount of information in an 
entire probability distribution of a set of n events 
Xi, defined as: 
 

ShE(X) = -ΣiP(xi). logb P(xi)   = ΣiP(xi). logb [1/P(xi)]  
=ΣiP(xi). logb I(xi)      [1] 
 

where I(Xi) =1/p(Xi )  and  p(Xi ) are respectively the 
information content of event Xi and its probability 
to happen. The unit is the nat = (1/0,69215) bit and 
usually the log base b is 2. Therefore, greater is the 
quantity of information (and then ShE), greater is 
the number of bits necessary to represent it,  and 
smaller is the probability to be generated and the 
possibility to forecast the event, and vice-versa.  
 

At the same time the Thermodynamic Entropy ThE 
(hereinafter simply ThE) is a state function whose 
variation Δ(ThE)is defined as: 
 

     Δ(ThE) = ΔQ/T                                 [2] 
 

being ΔQ = the heat given (-) or taken (+) by a 
system to/from a source at a temperature T (K). 
Given a thermodynamic system composed of 2 
sub-systems,  H and C, in contact with each other, 
the first at a Temperature TH greater than the 
temperature TC of the second one, heat 
spontaneously flows from the hotter to the colder 
subsystem and the total variation Δ(ThE) of the 
system is  Δ(ThE) = -ΔQ/TH + ΔQ/TC >0. Therefore 
in a spontaneous process the ThE always increases: 
this implies that nature evolves towards a 
continuous growth of its global ThE in the Universe.  
It can be shown that: 
 

     ThE = k.log D = - k.log(1/D)                       [3]   
 

being k the Boltzmann constant  = 1,38.10-23[J/K], 
and D a quantitative measure of the atomic 
disorder of the system. Therefore, greater is the 
disorder (and then ThE), greater is the probability 
to be generated, and vice-versa. It is evident that 
both ThE and ShE capture increasing randomness 
and that: 
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            ShE ≈ -β.ThE                             [4] 
 

where β is a dimensional constant, necessary to 
compensate the different dimension of the two 
entropies. Disorder increases when information 
decreases, that is ShE conceptually is , dimensions 
apart, a quantity of ThE with the sign changed , a 
sort of “negative thermodynamic entropy” .  
 

It follows that a living organism continuously 
increases its own ThE and should fastly reach its 
state of maximum ThE , which is its death. How can 
it avoid this dangerous decay? The obvious answer 
is: eating, drinking, breathing, thus through its 
“metabolism”, which, from the greek word 
μεταβαλλειν , means: “to exchange”. But ”To Exchange 
What?” MATTER ? No (what could be the meaning 
of an exchange of an atom of sodium or oxygen 
with another one?!); ENERGY ? No (1 kcal = 1 kcal, 
and human body takes from food & environment 
the same energy lost towards the environment); 
ENTROPY? Yes, and then INFORMATION!  
 

The organism can only survive by continuously 
extracting "Negative ThE" (i.e., ShE) from the 
environment; the objective is to equilibrate all 
unavoidable ThE production with a constant influx 
of new ShE. It extracts "Food" from the 
environment (high atomic-molecular order > high 
ShE > low ThE) and returns the "Final Wastes" of 
its metabolism to the environment (completely 
degraded matter, low atomic-molecular orders > 
high ThE > low ShE): the balance is satisfied 
because the total thermodynamic system 
“organism + environment” increases its ThE, and 
the life of the system is saved. In this logic, AFIB, a 
status which implies a reduction of ShE, seems to 
indicate “a shortage of information” generated by 
a dys-autonomia - a condition in which the 
autonomic nervous system(ANS) does not work 
properly – possibly to compensate a previous 
excess [as it could be the case of a paroxysmal AFIB 
episode after an overeating period], or to indicate 
the need to be compensated, by means of high 
information content intake such as  drugs or 
electric defibrillation or ablation38,39 [as it could be 
the case of AFIB on pathological basis: 
valvulopathies, congestive heart failures, etc.]. 
 

All the above confirms the value and the meaning 
of the Shannon Entropy also for the information 
content  present in the HRV-Markers, where it 
seems to have a behavior very similar to the ThE 
and to the Exergy (Gibbs Free Energy) in 

Energetics. AFIB is the one with the minor possible 
information content, and therefore, the easiest to 
be generated. It seems that AFIB is the “most likely 
condition” - i.e. a condition which can be reached 
without “efforts”, or, in any case, towards which 
the organism spontaneously evolves in absence of 
constraints and consumption of work.  On the 
contrary, what is usually considered “the normal 
condition” – thus the sinus rhythm – appears as a 
“steady state” where the organism must be 
constrained through an expensive equilibrium 
between the vagal and the sympathetic nervous 
systems, but remaining always ready to collapse 
towards AFIB once the equilibrium above, for any 
reason, is lost. 
 
Although the above discussion is a novel approach 
to AFIB, it may be able to change the "roots" of 
the entire strategy to address it. However, as the 
next section also reports, more focused 
experimental evidence and more robust 
theoretical models are required. 
 

5 CONCLUSION 
A new and effective mechanism for predicting and 
diagnosing atrial fibrillation has been introduced. 
This methodology is ready for prompt 
incorporation into clinical practice and aims to 
exceed the constraints of conventional ECG and 
Holter monitoring methods. The methodology 
employs a 24-hour recording of a subject's heart 
rate time series using high-quality wearable cardio-
frequency meters or comparable devices. 
Subsequent examination of heart rate variability is 
conducted using 50 markers calculated by 
advanced algorithms based on the statistical 
mechanics of complex disordered systems, with 
results validated by artificial intelligence following 
a sufficient machine learning period. Four markers 
demonstrate a high sensitivity for identifying atrial 
fibrillation (AFIB), albeit their specificity is limited, 
and they are effective only if AFIB occurrences 
occur during the heart rate recording period. 
Conversely, a fifth marker, Shannon Entropy, 
Shannon Entropy demonstrates outstanding 
sensitivity and specificity in AFIB detection, as well 
as a notable ability to identify AFIB regardless of 
whether events occurred during the monitoring 
period or in the recent or distant past. This 
information will allow the clinician to determine the 
patient's likelihood of recurrent atrial fibrillation 

https://en.wikipedia.org/wiki/Autonomic_nervous_system
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(AFIB) episodes, thereby facilitating preventative 
measures and preemptive therapies to mitigate the 
negative impacts of both sporadic and persistent 
AFIB episodes.  
 

Furthermore it must be emphasized that the 
proposed ShE – based methodology: 
 

 Permits the assessment of the simpler RR 
intervals to be performed instead of the PQRST 
complexes of the ECGs.  
 

 Can utilize advanced wearable technology, such 
as high quality cardio-frequency meters, pulse 
oximeters, health tracking smartwatches or  specially 
designed devices, to continuously record heart rate 
throughout the year, 24 hours a day, ensuring accurate 
diagnosis of AFIB episodes whenever they occur.  
 

 Shows no significant difference in the values of 
relevant HRV markers between males and females.  
 

 Has demonstrated that AFIB episodes lasting 
less than 6 minutes do not modify the relevant ShE 
marker levels, supporting the assumption that 
short-term AFIB is significantly less hazardous than 
long-term AFIB in terms of the potential to induce 
a cardiovascular event.  
 

 Does not differentiate between Atrial Fibrillation 
and Flutter, which, from this perspective, may be 
regarded as the same clinical condition. 
 

It must be underlined that Shannon Entropy is the 
sole HRV measure that exhibits a large and 
unmistakable drop during AFIB circumstances, 
whilst all other markers either remain constant or 
increase. Conversely, AFIB is the only pathology 
that can diminish ShE values from normal levels, as 
all other pathologies can only elevate ShE values. 
This unique characteristic establishes a peculiar 
double link between AFIIB and ShE, which, through 
the ShE, creates a connection between AFIB and 
the Thermodynamic Entropy. This allows one to 
view AFIB from a new perspective, as a natural 
status where the human body precipitates to, due 
to the second principle of thermodynamics, unless 
the sinus rhythm is maintained by means of 
adequate intake of energy (from food, environment, 
and so forth) capable of compensating the growing 
thermodynamic entropy and consequently the 
declining ShE. This is a hypothesis that may be 
better investigated mathematically developed 
mathematical modeling in the near future. 
Regardless, Shannon Entropy is always the main 
HRV metric for AFIB detection, allowing for the 

identification of AFIB even while other marker 
values remain unchanged. However, in circumstances 
where the diagnosis is ambiguous, alarms in other 
relevant markers might still be helpful. 
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