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in Detecting Atrial Fibrillation through Heart

ABSTRACT

Prompt detection of Atrial Fibrillation is crucial to avert the serious
complications linked to this arrhythmia. The diagnosis obtained from
ECG-Holter Monitoring is unreliable unless the arrhythmia occurs during
the course of these examinations. The paper presents a novel and robust
methodology for the prediction and diagnosis of Atrial Fibrillation,
employing Heart Rate Variability analysis of a patient, grounded in the
most advanced techniques of the statistical mechanics of complex
disordered systems, and suitable for integration into clinical practice. The
methodology has also employed Artificial Intelligence (following an
adequate period of Machine Learning) to verify the results via a
secondary, independent process. The research is an observational study
involving several thousand individuals who underwent experimental heart
rate monitoring and subsequent variability analyses. Among the
numerous markers evaluated in this analysis, four of them demonstrate
the ability to detect and diagnose fibrillation with high sensitivity but
limited specificity, and only if AFIB occurs during the monitoring period.
Notably, one indicator, Shannon Entropy, exhibits exceptional
performance by effectively detecting Atrial Fibrillation with both high
sensitivity and specificity, and even if episodes occurred in the recent or
distant past, demonstrating a significant "memory effect”. This fact
provides clinicians with an innovative approach for detecting and or
predicting this important arrhythmia, even in the absence of ECG analysis,
by solely monitoring the patient's heart rate over a 24-hour period. This
approach substantially enhances the detection of AFIB episodes and
facilitates the development of preventive measures and prophylactic
therapies to mitigate the adverse effects of the arrhythmia.
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1. Introduction

The efficacy of Heart Rate Variability (HRV) analysis
for the early detection of cardiac pathologies has
been demonstrated generally’, along with the
significance of the maximal entropy principle in the
temporal correlations of HRVZ This study focuses
on a specific cardiac condition, atrial fibrillation
(AFIB), with the objective of identifying the most
appropriate Heart Rate Variability (HRV) parameters
capable of accurately diagnosing or predicting
AFIB for direct implementation in clinical settings.
and to surpass the limitations of current AFIB
detection methods that predominantly depend on
the patient's ECG readings.

Due to its propensity to trigger cardiovascular
*7 and subsequent cognitive decline®, AFIB
is a prevalent cardiac arrhythmia with potentially
significant health consequences if not identified
early and managed with preventive measures to
reduce the associated risks. The potential
development of blood clotting during the irregular
rhythm of AFIB may result in subsequent cerebral
strokes, or similar events, following the conclusion
of the AFIB episode.

According to the most recent ESC Guidelines’,
AFIB is associated with a fivefold increased risk of
ischemic stroke. Preventing stroke through oral
anticoagulation is a critical aspect of managing
patients with atrial fibrillation. The administration of
anticoagulants - particularly the contemporary
class of New Oral Anticoagulants (NOA) -
significantly diminishes this risk. However, it is
unfeasible to envisage the treatment of entire
populations with lifelong anticoagulant therapy,
due to the high costs associated with NOAs and
their potential side effects, including bleeding
events and alterations in vital clinical parameters.

events

Therefore, it is essential to differentiate individuals
who are legitimately at risk of experiencing sporadic
or recurrent AFIB episodes from those who are not.
Unfortunately, the principal diagnostic techniques
for AFIB, namely the ECG (electrocardiogram) and
the 24-hour Holter Monitoring of cardiac activity,
possess a limited probability of detecting the
arrhythmia, as it must occur precisely during the
testing period to be identified.

An alternative methodology capable of assessing
the risk of AFIB in an individual should therefore be
viewed as advantageous, both for increasing the
detection of AFIB cases and for differentiating

patients who most require anticoagulant therapy
from others.

The primary objectives of this paper are therefore:

" To demonstrate that HRV analysis can provide a
novel methodology for the early detection of AFIB
by utilizing several indicators commonly employed
in this form of analysis."°

" To consider the HRV-based methodology outlined
above as a complementary or integrative approach
to the traditional ECG-based method, thereby
enhancing the identification of AFIB episodes.

" To present clinicians with a simple and effective
tool - the Shannon Entropy - whose values,
obtained from straightforward 24-hour heart rate
recordings acquired through wearable cardio-
rapidly  distinguish
individuals with, or at risk of, AFB from others.

frequency monitors, can

" To enhance the effectiveness of risk stratification
algorithms for predicting stroke and thromboembolism
in patients with atrial fibrillation, such as the widely
used CHA(2)DS(2)-VASc score' or the Framingham
Risk Score'? (commonly used for severe coronary
heart disease) by incorporating the Shannon
Entropy (ShE) score into the algorithm.

2. Methods

A total of about 7500 patients were included in the
study, yielding a net effective count of 7315 valid
patients after excluding records impacted by
artifacts or errors in documentation. The patients
have been divided into the following two groups
and five subgroups:

e A-Group, comprising 6511 individuals with no
prior or current episodes of AFIB, divided into
two subgroups:

v' A1 (1813 subjects) comprising healthy individuals
(control group), defined by the absence of substantial
disease and the lack of long-term therapy;

v A2 (4698 subjects A2 (4698 subjects) comprising
individuals with diverse comorbidities, excluding AFIB.
e B-Group, comprising 804 patients with AFIB ,
divided into three subgroup as followss:

¥'B1 (247 patients): individuals with recent episodes
of AFIB (within days or weeks prior to the HRV test,
as ascertained from the patients' medical history;
v/ B2 (227 patients): individuals with a history of atrial

fibrillation episodes occurred months prior to the
HRV test, as ascertained from their medical records;
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¥'B3 (330 patients):individuals with atrial fibrillation
episodes identified during the HRV test and
confirmed by the recorded ECG trace.

The entire methodology employed in the
development of HRV analysis is outlined in the
following four steps:

STEP 1: FROM THE PATIENTS TO THE HEART
RATE TIME SERIES

All patients have undertaken a 24-hour Heart Rate
Monitoring (HRM), conducted using Mortara 12-
channel Holter devices and/or high-quality wearable
cardio-frequency monitors (such as POLAR V800,
E-MOTION  Faros, MINICARDIO HOSAND
PROFESSIONAL, and similar equipment). From the
HRM records, the heart rate time series , or RAW
RR files, have been extracted - where RR represents
the time interval between two consecutive
heartbeats - and subsequently decoded, cleaned
(to remove artifacts and malfunctions), and
processed to produce RR files consisting of
approximately 100,000 RR intervals within 24 hours

for each subject, expressed in milliseconds, and
prepared for subsequent HRV analysis.

STEP 2: ASSESSING THE PATIENT'S HEART RATE
VARIABILITY USING A 50-MARKER VECTOR
Following the preparation of the RR interval files,
MATLAB-based software has been developed and
employed to perform a comprehensive HRV
analysis for each patient. This analysis is based on
the evaluation of a series of 50 distinct HRV
indicators, providing a thorough characterization of
the patient's HRV directly from the recorded RR
interval data. TABLE 1 lists these indicators, or
markers, together with their respective definitions.
From the table, it is evident that the HRV of a
subject can be characterized by three distinct
categories of markers: linear markers in the time
domain, linear markers in the frequency domain
(obtained using Fast Fourier Transforms (FFT) and
Autoregressive Methods, and assessed
independently for Very Low, Low, and High
Frequency Bands), and non-linear markers.

Table 1: List of hrv markers evaluated from rr "raw" data files

MARKER

DEFINITIONS

Time Interval between two consecutive QRS complexes

The Mean of RR Intervals over a 24 hours period

Standard Deviation of RR Intervals (24h)

The Mean Heart Rate (24h)

Standard Deviation of Instantaneous Heart Rate Values (24h)

Square Root of Mean Square Differences between Successive RR Intervals (24h)

Number of Successive RR Interval Pairs that Differ > 50 ms (24h)

NNS50 divieded by the Total Number of RR Intervals (24h)

Integral of the 24h RR Interval Histogram divided by its Height

Baseline Width of the RR Interval Histogram (24h)

The Mean of the Average NN Intervals over 5 min periods

Standard Deviation of the Average NN Intervals over 5 min periods

VLF, LF and HF Band Peak Frequencies, evaluated by FFT and AR Methods

TYPE (VARIABLE) UNITS
RRor NN interval | [ms]
Mean RR [ms]
SDNN [ms]
< MeanHR | [b/m]
m <§‘: STD-HR [b/m]
| 0O RMS-SD [ms]
QA
< W NN50 [n]
xS PNNS50 [%]
| F HRV TIN -
> Baseline TIN [ms]
EE Mean RR5 [ms]
w SDANN [ms]
E Peak Frequency | [Hz]
- Absolute Power | [ms?]

Absolute Powers of VLF, LF and HF Bands (both FFT and AR)

Relative Power | [9%0]

Relative Powers of VLF, LF and HF Bands (both FFT and AR)

Normalized Power | [%]

Powers of LF and HF Bands in Normalized Units [i.e.excluding VLF Band]

FREQUENCY
DOMAIN*

Total Power [ms’]

Total Power

LF/HF - Ratio Between LF and HF Band Powers
§ SD1 [ms] Standard Deviation of Poincaré Plot [Rn+1 vs Rn] Orthogonal to the Identity Line
wn £
w| & SD2 [ms] Standard Deviation of Poincare Plot [Rn+1 vs Rn] Along the Identity Line
- - -
m E RPL min [b] Mean Line Length
<_f 93 RPL max [b] Maximum Line Length
>
% & E REC [%] Recurrence Rate
> § < DET [%] Determinism
% @ ShE B Shannon Entropy
i ApEn _ Approximate Entropy
Z " SampEn _ Sample Entropy
- b DFA al Detrended Fluctuations Analysis: Short Term Fluctuation Slope
Z
2 -
o) 6 DFA a2 _ DFA: Long Term Fluctuation Slope
Z D2 _ Correlation Dimension
BMP [%] "LIFE Potential” or "BARRA-MORETTI Potential" !

* Evaluated Both through Fast Fourier Transform (FFT) and AutoRegressive Methods (AR),
and, separately, for each band [Very Low Frequencies-VLF; Low Frequencies - LF; High Frequencies - HF]
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The latter category encompasses the Shannon
Entropy (ShE)'*'® and several other indicators of
clinical significance. The three frequency bands
utilized in the aforementioned FFT are: HF: 0.16-
0.40 Hz; LF: 0.05-0.15 Hz; and VLF: 0.01-0.04 Hz.

The vector composed of these 50 marker values
functions as a unique identifier for each individual,
analogous to a sequence of their DNA. However,
unlike DNA, its components may fluctuate over
time depending on the individual's age, health
condlition, and general well-being.

STEP 3: GENERATING THE SEQUENCE OF
MARKER ALARMS

By comparing the values of the vector components
above to the average values of the same markers
in the control subgroup A1 (healthy patients), it is
possible to identify alarms for each marker, which
occur whenever a marker's value significantly
exceeds or falls below the corresponding average
value of the control group. Moderate or severe
alarms are triggered for each marker when the
patient's marker value exceeds or falls below a
factor of o or 20, respectively (\o representing the
standard deviation of the distribution of the
marker's values around its mean in the control
group). Indicating in green the absence of alarms,
in yellow the presence of a moderate alarm, and in
red the presence of a severe alarm, each vector
introduced in Step 2 becomes a sequence of
markers' alarms, distinguished by an alternating
pattern of green, yellow, and red colors. Within this
framework, HRV can function as a reliable and
autonomous diagnostic tool, assuming that the
distinctive pattern of a pathology can be identified
through the specific distribution of a patient's
sequence of marker alarms.

STEP 4: PATHOLOGY IDENTIFICATION FROM
THE PATIENT'S MARKER ALARMS

Based on the sequence of the patient's marker
alarms, it becomes possible to identify the
presence of a pathology once the characteristic
alarm pattern associated with the pathology is
recognized. This paper's primary objective is to
identify the "AFIB pathology" by establishing its
characteristic pattern of marker values, which
appear to be altered (alarms) relative to the normal
values observed in the control group.

Upon completing the procedures detailed in Steps
1, 2, and 3, several analyses have been conducted

to identify the characteristic marker patterns and
alarms for each of the previously mentioned
groups and subgroups, aiming to uncover any
significant  clinical ~ findings. The statistical
significance of these results has been assessed by
means of standard t-statistics and p-values where
appropriate, as well as of relevant sensitivity and
specificity percentages'2¢. These analyses also
incorporated an original graphical evaluation of the
distribution of marker values within each group, as
well as their overlap or distinctions between
groups, to provide an easily interpretable and
practical tool for clinicians. This graphic will be
employed in the following section to illustrate the
primary research findings.

STEP 5: VALIDATION OF THE PATHOLOGY
IDENTIFICATION BY MEANS OF AI-ASSISTED
PROCEDURE

Concurrently with the aforementioned algorithms
utilizing conventional methods from the statistical
mechanics of complex disordered systems, an
Artificial Intelligence (Al) methodology has been
developed to validate and substantiate the
previously acquired results.

The RR-files have been directly utilized as inputs for
a multi-layer feed-forward neural network, which
has been pre-trained to facilitate patient classification.
However, before training the network, preliminary
procedures were carried out to confirm the
effective number of markers via principal component
analysis and to implement data augmentation
owing to the wide scope of the input data. Having
developed this basis, a machine learning (ML)
approach has been employed to train the network
and illustrate its proficiency in accurately classifying
patients, distinguishing healthy individuals from
those with atrial fibrillation.

The concordance between AFIB detection using
the algorithms introduced in stages 1, 2, 3, and 4
and AFIB detection through Al-based methods
exceeds 99%.This affirms the growing importance
of Al in healthcare: in recent years, numerous
devices and sophisticated algorithms have been
effectively employed to assist medical professionals.
One of the main goals of this collaboration
between humans and machines is to guarantee
widespread accessibility - particularly in low-
income and remote areas - to medical services, as
well as to reduce the time needed to achieve a
diagnosis. Certainly, for Al-driven devices to
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efficiently analyze large volumes of data and make
timely precise decisions, they must first undergo
proper training. The exhaustive machine learning
methodologies utilized in this study are thoroughly
described in the aforementioned references 1 and 2.

The aforementioned database, which consists of
7315 RR 24h-HRM patient records, comprises:
2214 records provided by the Ascoli Piceno Public
Hospital between 2016 and 2020 as part of a
cooperation agreement signed with POLISA and
within a contract obtained from UNICAL; 1887
records downloaded by the Physiobank MIT online
database® and 3214 patient records generated by
POLISA's MATCH HRV NETWORK inside the

Table 2: Sources of the analyzed rr "raw" data files

Pythagoras Project, which is co-funded by REGIONE
CALABRIA [see the "Acknowledgements" below].

The amounts and types of files received by each
source are summarized in Table 2, which is divided
into three categories: "HP" (Healthy People), which
refers to patients with no pathologies and no
ongoing therapies; "AFIB," which refers to patients
with atrial fibrillation; and "ANY PATHOLOGY BUT
AFIB," which refers to patients with any pathology
other than AFIB.

HP AFIB All Pathologies But AFIB | TOTAL
FROM THE ASCOLI PICENO HOSPITAL 756 700 758 2214
FROM THE PHYSIOBANK MIT ON-LINE DATABASE 57 104 1726 1887
FROM THE MATCH HRV-NETWORK Managed by POLISA 1000 0 2214 3214
GRAND-TOTAL: 1813 804 4698 7315

3. Results

The findings indicate that, although four HRV
markers demonstrate high sensitivity in detecting
AFIB episodes - albeit exclusively those occurring
during the HRM performed for HRV analysis - they
exhibit limited specificity in diagnosing AFIB.
Consequently, these four markers be
designated as "second-choice AFIB markers."
However, a fifth marker, Shannon Entropy (ShE),
appears to provide both high sensitivity and
specificity in the diagnosis of AFIB. Furthermore,
the ShE demonstrates a peculiar and atypical
behavior: it appears capable not only of detecting
an active AFIB episode occurring during the HRM
of the HRV test but also of retaining evidence of
AFIB episodes that took place weeks or months
earlier. This implicitly encompasses the associated
risk of recurrent AFIB episodes in the near to
medium-term future, which correlates
proportionally with the number of prior AFIB
episodes. Therefore, the ShE will be designated as
the "First Choice AFIB Marker." Within this
framework, the principal research findings can be
summarized into two key points: the first
concerning "the 2nd choice AFIB markers" (Sub-
section 3.1), and the second relating to "the 1st
choice marker" (Sub-section 3.2). Additional
statistical observations will complete the results
section (Subsection 3.3).

will

© 2026 European Society of Medicine

3.1 FIRST KEY-POINT: “THE 2" CHOICE AFIB
MARKERS”

These markers include the non-linear variable SD1
as described in TABLE 1, along with the three linear
variables pNN50, Mean RR5, and the ratio (RMS-
SD)/(MEAN RR). All these Markers increase their
values during AFIB episodes. Their behavior is
shown in details, numerically in TABLE 3, upper
section, and graphically in FIGURE 1.

All marker values are normalized to the average
values observed in healthy individuals to achieve
dimensionless units; thus, the values in the table
denote the ratio of the absolute marker values to
the corresponding average values for healthy
individuals (HP), specifically those in the A1-Sub-
Group [Control Group]. In this normalization, the
mean value of the marker for the HP is uniformly
established at "1," with the range of HP values
characterized by the Standard Deviation (SD)
relative to unity, often ranging from a few percent
to several tenths of a percent.



Table 3. Typical range of values and their principal statistical characteristics for the markers addressed in the

1stand 2" key points

A1SUBGROUP A2 SUBGROUP B3 SUBGROUP
% HRV MARKER | Range of | Average | Standard | Range of | Average | Standard | Range of | Average | Standard
= values | Value |Deviation| values | Value |Deviation| values | Value (Deviation
é RMS-SD/MeanRR |0.38-1.71 | 1,00 033 (038314 176 069 |1.23-286| 205 0.41
¢ PNN50 0.26-1.30 | 1,00 026 |0.26-214| 120 047 |1.53-405| 279 0.63
E SD1 0.36-1.62 | 1,00 031 |036-387| 099 0.88 |0.96-251| 173 0.39
% VN(MEAN)RRS  |0.43-1.28 | 1,00 021 |021-219| 120 050 |1.23-251| 187 0.32
ShE 0.93-1.17 | 1,00 0.06 |0.93->2 15 03 see below
¢ 2 B1SUBGROUP B2 SUBGROUP B3 SUBGROUP
g g HRVMARKER | Range of | Average | Standard | Range of | Average | Standard | Range of | Average | Standard
9 8 values | Value |Deviation| values | Value |Deviation| values | Value |Deviation
“ | Shannon Entropy |0.79-0.93| 0.86 003 |071-087| 079 0.04 |0.02-0.78| 040 0.19
NOTE Alla values are dimensionless as they are divided by the corresponding average value of the AL (Healthy) Group.

In Table A, the table's parts are indicated in the
first column, and the marker names - including the
AFIB  second-choice  markers taken into
consideration in this subsection as well as the first-
choice marker shown in the following subsection
3.2 - are listed in the second column. Progressing
from left to right, three sets of columns are
displayed, corresponding to the A1, A2, and B3
subgroups of patients in the upper section of the
table, and to the B1, B2, and B3 subgroups in the
lower one. Each set of columns is divided into three
columns, each representing the range of values,
the mean value, and the standard deviation
(around the mean) of the markers for each
subgroup, respectively.

The measured results for the four 2" choice
markers are subsequently presented in a more
clear and practical graphical format in FIGURE 1.
The four markers mentioned above are depicted
within adjacent, distinct vertical blocks. Within each
block, the vertical bars depict the complete
distribution of marker values among patients in the
A1, A2, and B3 subgroups. In contrast, the B1 and
B2 subgroups are not depicted, as they lack
members because they exhibited no significant
alterations in the values of the four markers for
patients within these categories.

Although these four markers seem adequately
capable of identifying the presence of AFIB, two
main obstacles limit the implementation of these
markers in clinical practice:

e The markers are capable only of detecting
ongoing AFIB episodes, that is, episodes occurring
during the HRM (precisely as occurs with ECG and
conventional Holter Monitoring), and do not
appear to possess the ability to assess previous
AFIB episodes (the patients in the B1 and B2
categories do not show changes for these markers,
as mentioned earlier)

Due to the apparent overlap in the range of values
presented in the second and third sets of columns
in Table 3 [or, visually, in the corresponding A1, A2,
and B3 vertical bars in Figure 1], most of the values
for these four markers are shared across numerous
other pathologies (A2) and, to some extent, with
the Healthy People Subgroup (A1). For instance, an
SD1 Marker value of 1.23 is detected in the A1 and
A2 populations, as well as in the B3 population.
Therefore, the specificity of these markers for AFIB
detection seems to be relatively limited, except for
the marker values within the uppermost zone of the
B3 vertical bars in Figure 1, which will be more
precisely detailed in the subsequent subsection 3.3.

© 2026 European Society of Medicine 6



RMS-SD / Mean RR pNN50 SD1 VM (MEAN) RR5
1.47 3.05 423 2.51
137 2.99 114 2.45
1.28 2.92 2.05 2.40
1,18 2.86 3.96 2.35
2.09 2.79 3.87 2.29 N
3.99 2.73 3.78 2.24
3.90 2.66 3.69 2.19
3.80 2.60 3.60 sall 755 N
3.71 n BE= 3.51 2.08
3.61 2.47 aall 5.92 N o BT
3.52 2.40 3.33 E 1.97 0 Wea
3.42 ~ EEI 324 1.92 E o
333 2.27 3.15 -8 o P
323 2.21 3.06 a 1.81 = Q
3.14 sall 714 "y o B w¥ 1.76 a
3.04 m 2.08 = 2.88 s 1.71
2.05 E —u 0 E <l 279 o Q IS s &\
2.85 1.95 = 2.70 - 1.60
2.76 s -l .55 o e) 2561 (=] 1.55 3
2.66 @ 1.8 m 252 L el 149 0
257 > 1.75 5= 2.43 : 1.44 =
2.47 () ) BN 'R & B o 1.39 :
2R " ENH 2R EmE
= (o] - = ©
2.19 g 1.49 E 2.07 = 1) Wl
2.09 = 1.43 1.98 = 117 & E
2.00 E 1.36 E 1.89 (=] 1.17 E
1.90 o 1.30 ” 1.50 > o7l e | ©
1.81 15| W | W 1.71 = 1.01 >
1.71 H = o 1.17 5 E 1.62 H 0.9 | =
1.62 & |6 o] @ 1.53 & | 0.91 a' <
= e B 1aa] 2 q oss| W | .,
ale |z 0.97 E > 135 & 080 - ﬂ
1355] ¥ E 0.91 ; E 1z6) x| & 075 | =
124 = 0.8 117 ] = E 0.69 ) & o
3
1.14 a' o 0.78 % 58 1.08 a' oea] ® E
1.05 % <q 0.71] 2 0.99 % o 055 O
oss] a 0.65 | = 050 ¥.) 0.53 -g g
086 | X E ] g- 081 X '3 0.a] @
076] = 3 o] o] © o7z} o 0.43 '3
7] & | 3 0] G | 063 & 0.37
0.57 Bl 3 o] 2| & 0.54 Bl 0.32
0.48 g 1] 02 0 a 0.45 g 0.27
035)] @ 0.26 036] @ 0.21
L0 0.2 2 2.2

Figure 1: Spreading of the 2nd choice markers values for different sub-groups of patients

3.2 SECOND ITEM: THE 1°T CHOICE AFIB
MARKER: THE SHANNON ENTROPY (SHE)

The impressive performance of the ShE in AFIB
detection is demonstrated in the preceding TABLE
3, lower section, in numerical format, and in
FIGURE 2, in graphical format, utilizing the same
presentation style as that used for the markers in
Figure 1. The units on the y-axis are once again
normalized relative to the mean ShE value
observed in healthy individuals. Specifically, the y-
axis value indicates the ratio of the ShE value
obtained for the subject under investigation to the
average ShE value measured across subjects within
the A1 cohort. The sole significant distinction
between Figures 1 and 2 is that all subgroups B1,
B2, and B3 are now comprehensively integrated
and adequately represented in Figure 2.

The results depicted in the figure possess
substantial clinical significance for the diagnosis of
AFIB, as they categorize the entire patient
population into two distinct, well-defined groups:
individuals with a ShE normalized value below 0.93

and those with a value equal to or exceeding 0.93.
This signifies that:

%*If a patient demonstrates a normalized ShE value
of 0.93 or higher (graphically positioned above the
horizontal dashed line), indicating a level exceeding
93% of the minimum ShE value classified as
"normal”, the patient is neither suffering from AFIB
nor at considerable risk of future AFIB episodes.
Therefore, the patient is currently ineligible for
preventative measures targeting AFIB-related
problems. More specifically, if the ShE value lies
within the range of 0.93 to 1.16, the patient is
regarded as healthy or potentially impacted by
conditions not associated with AFIB. If the value
surpasses 1.16, the patient is considered unhealthy
and is influenced by underlying conditions other
than AFIB. including likely carcinomas, congestive
cardiac failures, severe neurological disorders, and
others, but the clinical significance of elevated ShE
values is beyond the scope of this studly.

% If a patient's normalized ShE value falls below
0.93 (below the horizontal dashed line), indicating

© 2026 European Society of Medicine 7



less than 93% of the minimal "normal" ShE value,
the patient is highly likely to experience episodes
of atrial fibrillation (AFIB). Consequently, the
patient is eligible for prophylactic treatments (e.g.,
non-vitamin K antagonist oral anticoagulants, or
NOACs) to reduce the risk of AFIB-associated
complications. More specifically:

e If the ShE value is within the range of 0.86-0.93,
it indicates that the patient most likely experienced
symptomatic or asymptomatic atrial fibrillation
episodes in the distant past (one or more months prior).

e If the value falls within the range of 0.78 to 0.86,
it suggests that the patient likely experienced AFIB

episodes in the recent past (days or weeks) and/or
in the distant past.

e If the value decreases between 0.70 and 0.78,
the patient experienced AFIB episodes either in
the recent past or during the 24-hour HRM
recording during the HRV analysis.

If the below 0.78, the patient
demonstrated episodes of AFIB during the 24-hour
HRM recording conducted for the HRV test.

value s

ShE

1.33 S
(L
S
1.25 ""o
<En
a -
117 g::
i o E5
SkEa|® o
e:t'o o
100"'.""2_‘ 4
B - I - g
]
- - ‘”———

0.92

0.83

0.75

0.67

0.58

0.50

Sub-Group B1:

Remote
Past AFIB

3
]
2 a
S
°4-l
S S
Q3
~§QJ
;&

Sub-Group B3:
On-going AFIB

Figure 2: Spreading of the she measured values for the five sub-groups of patients

As depicted in Figure 2, the two main limitations of
the prior markers presented in sub-section 3.1 have
been resolved, and the use of ShE in clinical
practice for AFIB prediction and detection is now
prepared for deployment; indeed:

e The ShE is capable not only of detecting AFIB
episodes occurring during the HRM but also of
demonstrating a notable "memory effect" conceming

AFIB episodes that took place in the recent (B2-
Subgroup) or distant (B1-Subgroup) past. When a
patient exhibits a ShE value within the range
corresponding to one of the B Subgroups, even if
no AFIB episodes are documented during the
HRM, itis crucial to evaluate the likelihood of future
AFIB occurrences and to consider initiating preventive
treatments to reduce AFIB-associated risks.

© 2026 European Society of Medicine 8



¢ Despite the limited specificity of the secondary
AFIB markers in Subsection 3.1, the ShE
demonstrates both high sensitivity and specificity.
This assertion is visually corroborated by Figure 2,
which clearly shows that the region occupied by
the ShE values in AFIB conditions is distinctly and
entirely separated from the areas associated with
the ShE values of healthy individuals and/or those
with other pathologies, as further quantified in the
subsequent subsection 3.3.

For the reasons outlined above, the ShE should be
considered the primary diagnostic tool for AFIB,
offering clinicians a valuable means to distinguish
individuals at risk of AFIB from others. Once the
ShE drops below 93% of the average ShE value
observed in healthy individuals, atrial fibrillation
can be accurately diagnosed or anticipated. In
other words, low ShE values appear to be a
prerequisite for the occurrence of AFIB episodes,
and the lower the ShE value, the greater the
probability of AFIB episodes.

3.3 ADDITIONAL STATISTICAL OBSERVATIONS
A.P-VALUE: The single p-value of the entire B
group of patients compared to the entire A group
has been taken into consideration because the
current paper is solely concerned with the
detection of the AFIB. The p-value for the 2
choice markers was p<0.05 while for the ShE the p-
value was <0.001, or nearly zero. Because Groups
A and B were clearly split in Figure 2, this was also
visually understandable. and consistent with the
amount of degrees of freedom (about 800) because
of the large number of patients examined, which is
uncommon in these kinds of investigations.

B.SENSITIVITY AND SPECIFICITY: TABLE 4 presents
the sensitivity and specificity values for both the
primary and secondary markers previously

examined. For the second choice markers, TABLE
4 indicates that their sensitivity in AFIB detection is
satisfactory. (0 > 95%), resulting in a very low
proportion of "false negatives FN"" (FN = 1 -0 <
5%). However, due to the significant overlap in the
range of values already observed in the second and
third columns of Table 3 and in Figure 1, most of
the high values of these four markers are also
present in numerous other pathologies and
consequently, the specificity of these markers for
AFIB detection appears to be quite limited., with s
values in the range 25-33%, and therefore an high
percentage of “False Positive” [FP = 1-s], which is
the range 67-75%.. The four markers show an
appropriate specificity in AFIB identification only
within the narrow range of marker values that
surpass the top limit of the range of values
indicated by the marker for the Subgroup A2
(Table 4, right section)., with s values in the range
65%-70% and a percentage of “False Positive”
[FP = 1-s], in the range 30%-35%.

For those the first choice marker is concerned,
when applied in clinical practice, ShE appears to
demonstrate both high diagnostic sensitivity (o
>90%), resulting in a very low percentage of false
negatives (FN = 1 - ¢ < 1%), and very high
diagnostic specificity (s>99.9% ) leading to a very
low percentage of false positives (FP = 1 - s <
0.1%). This assertion is supported by Figure 2,
which clearly demonstrates that the
occupied by the ShE values in AFIB conditions is
distinctly separated from the areas associated with
the ShE values of healthy individuals and/or those
affected by other pathologies: once the ShE value
falls below 93% of the average ShE value observed
in healthy individuals, AFIB can be reliably
diagnosed or predicted.

region

TABLE 4: Sensitivity o and specificity s of the 1st and 2nd choice markers for AFIB detection

SPECIFICITY "s"

MARKER SENSITIVITY "o
TYPPE HRV INDEX FALSE || MARKER
O INEGATIVE] VALUE

1st CHOICE ShE
MARKERS

< 1%

FALSE MARKER FALSE
POSITIVE VALUE POSITIVE

RMS-SD/

0,
Mean RR 5%

MARKERS
SD1 5%

VN(MEAN)RR5 5%
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Some concluding remarks based on the thorough
analysis of the RR data files are as follows:

» No significant differences in the ShE values have
been observed between males and females.

» Short-duration AFIB episodes lasting less than 6
minutes did not modify the She values: this finding
seems to endorse the hypothesis that brief
episodes of AFIB are inherently less hazardous than
prolonged episodes in relation to the likelihood of
precipitating a cardiovascular event.

» The alterations in SHE values are inadequate to
differentiate between Atrial Fibrillation and Flutter,
which, from this standpoint, may be regarded as
the same clinical entity.

4 Discussion

ShE is the sole marker exhibiting substantially
below-normal levels in cases of AFIB, whereas all
other analyzed 49 markers remain unchanged or
exhibit rapid increases. The same SHE values,
when associated with other pathologies (including
major conditions such as carcinomas, congestive
heart failures, genetic neuropathies, etc.), tend to
elevate and do not diminish. This unexpected
finding adds to the ongoing important discourse
concerning the connection between physics and
information: the operational equivalence of
information gain and entropy reduction has been
widely acknowledged. Nonetheless, the notion
that a subjective measure such as information
could influence the "objective" thermodynamic
properties of the system continues to be a matter
of considerable debate. Nevertheless, it is difficult
to deny that the process of information acquisition
can be directly associated with the ability to
perform effective tasks. Consequently, questions
concerning thermodynamics, the second law, and
the arrow of time have become intertwined with a
longstanding ~ dilemma:  the problem  of
measurements in quantum physics. The specter of
information casts a shadow over the sciences.
Thermodynamics, the foundation of statistical
mechanics, the quantum theory of measurement,
the physics of computation, and numerous subjects
within the disciplines of dynamical systems,
molecular biology, genetics, and computer science
all revolve around the shared concept of information.
Well-defined indications exist concerning the
significance of information within the domain of
physics, as well as its function as a bridge between

the natural sciences and the science of computation.
Furthermore, for individuals aiming to attain
proficiency in Machine Learning (ML) within the
artificial Intelligence (Al) domain, understanding
Shannon's Entropy is crucial, as ShE forms the basis
of functions that comprise the essential tools for an
ML practitioner [1,2]. Participating in this intricate
debate surpasses the scope of this article;
consequently, only a few concise considerations will
be offered solely to promote new interdisciplinary
perspectives between physics and medicine.

The ShE (X) is the total amount of information in an
entire probability distribution of a set of n events
Xi, defined as:

ShE(X) = -ZiP(x). logs P(x)
=%iP(x). logs I(x)  [1]

where I(Xi) =1/p(Xi) and p(Xi) are respectively the
information content of event Xi and its probability
to happen. The unit is the nat = (1/0,69215) bit and
usually the log base b is 2. Therefore, greater is the
quantity of information (and then ShE), greater is
the number of bits necessary to represent it, and
smaller is the probability to be generated and the
possibility to forecast the event, and vice-versa.

= ZP(x). logs [1/P(x)]

At the same time the Thermodynamic Entropy ThE
(hereinafter simply ThE) is a state function whose
variation A(ThE)is defined as:

A(ThE) = AQ/T [2]

being AQ = the heat given (-) or taken (+) by a
system to/from a source at a temperature T (K).
Given a thermodynamic system composed of 2
sub-systems, H and C, in contact with each other,
the first at a Temperature TH greater than the
temperature TC of the second one, heat
spontaneously flows from the hotter to the colder
subsystem and the total variation A(ThE) of the
system is A(ThE) =-AQ/TH + AQ/TC >0. Therefore
in a spontaneous process the ThE always increases:
this implies that nature evolves towards a
continuous growth of its global ThE in the Universe.
It can be shown that:

ThE = k.log D = - k.log(1/D) [3]

being k the Boltzmann constant = 1,38.10%[J/K],
and D a quantitative measure of the atomic
disorder of the system. Therefore, greater is the
disorder (and then ThE), greater is the probability
to be generated, and vice-versa. It is evident that
both ThE and ShE capture increasing randomness
and that:
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ShE ~ -B.ThE (4]

where B is a dimensional constant, necessary to
compensate the different dimension of the two
entropies. Disorder increases when information
decreases, that is ShE conceptually is , dimensions
apart, a quantity of ThE with the sign changed , a
sort of “negative thermodynamic entropy” .

It follows that a living organism continuously
increases its own ThE and should fastly reach its
state of maximum ThE , which is its death. How can
it avoid this dangerous decay? The obvious answer
is: eating, drinking, breathing, thus through its
“metabolism”, which, from the greek word
petaBoMewv , means: “to exchange”. But “To Exchange
What?” MATTER? No (what could be the meaning
of an exchange of an atom of sodium or oxygen
with another one?!); ENERGY? No (1 kcal = 1 kcal,
and human body takes from food & environment
the same energy lost towards the environment);
ENTROPY? Yes, and then INFORMATIOM

The organism can only survive by continuously
extracting "Negative ThE" (i.e., ShE) from the
environment; the objective is to equilibrate all
unavoidable ThE production with a constant influx
of new ShE. It extracts "Food" from the
environment (high atomic-molecular order > high
ShE > low ThE) and returns the "Final Wastes" of
its metabolism to the environment (completely
degraded matter, low atomic-molecular orders >
high ThE > low ShE): the balance is satisfied
because the total thermodynamic
“organism + environment” increases its ThE, and
the life of the system is saved. In this logic, AFIB, a
status which implies a reduction of ShE, seems to
indicate “a shortage of information” generated by
a dys-autonomia - a condition in which the
autonomic nervous system(ANS) does not work
properly — possibly to compensate a previous
excess [as it could be the case of a paroxysmal AFIB
episode after an overeating period)], or to indicate
the need to be compensated, by means of high
information content intake such as drugs or
electric defibrillation or ablation3*%’ [as it could be
the case of AFIB on pathological basis:
valvulopathies, congestive heart failures, etc.].

system

All the above confirms the value and the meaning
of the Shannon Entropy also for the information
content present in the HRV-Markers, where it
seems to have a behavior very similar to the ThE
and to the Exergy (Gibbs Free Energy) in

Energetics. AFIB is the one with the minor possible
information content, and therefore, the easiest to
be generated. It seems that AFIB is the “most likely
condition” - i.e. a condition which can be reached
without “efforts”, or, in any case, towards which
the organism spontaneously evolves in absence of
constraints and consumption of work. On the
contrary, what is usually considered “the normal
condition” — thus the sinus rhythm — appears as a
“steady state” where the organism must be
constrained through an expensive equilibrium
between the vagal and the sympathetic nervous
systems, but remaining always ready to collapse
towards AFIB once the equilibrium above, for any
reason, is lost.

Although the above discussion is a novel approach
to AFIB, it may be able to change the "roots" of
the entire strategy to address it. However, as the
next section also reports, more

evidence and more

focused
experimental robust

theoretical models are required.

5 CONCLUSION

A new and effective mechanism for predicting and
diagnosing atrial fibrillation has been introduced.
This  methodology is ready for prompt
incorporation into clinical practice and aims to
exceed the constraints of conventional ECG and
Holter monitoring methods. The methodology
employs a 24-hour recording of a subject's heart
rate time series using high-quality wearable cardio-
frequency meters or comparable
Subsequent examination of heart rate variability is
conducted using 50 markers calculated by
advanced algorithms based on the statistical
mechanics of complex disordered systems, with
results validated by artificial intelligence following
a sufficient machine learning period. Four markers
demonstrate a high sensitivity for identifying atrial
fibrillation (AFIB), albeit their specificity is limited,
and they are effective only if AFIB occurrences
occur during the heart rate recording period.
Conversely, a fifth marker, Shannon Entropy,
Shannon Entropy demonstrates outstanding
sensitivity and specificity in AFIB detection, as well
as a notable ability to identify AFIB regardless of
whether events occurred during the monitoring
period or in the recent or distant past. This
information will allow the clinician to determine the
patient's likelihood of recurrent atrial fibrillation

devices.
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(AFIB) episodes, thereby facilitating preventative
measures and preemptive therapies to mitigate the
negative impacts of both sporadic and persistent
AFIB episodes.

Furthermore it must be emphasized that the
proposed ShE - based methodology:

»Permits the assessment of the simpler RR
intervals to be performed instead of the PQRST
complexes of the ECGs.

» Can utilize advanced wearable technology, such
as high quality cardio-frequency meters, pulse
oximeters, health tracking smartwatches or specially
designed devices, to continuously record heart rate
throughout the year, 24 hours a day, ensuring accurate
diagnosis of AFIB episodes whenever they occur.

» Shows no significant difference in the values of
relevant HRV markers between males and females.

»Has demonstrated that AFIB episodes lasting
less than 6 minutes do not modify the relevant ShE
marker levels, supporting the assumption that
short-term AFIB is significantly less hazardous than
long-term AFIB in terms of the potential to induce
a cardiovascular event.

» Does not differentiate between Atrial Fibrillation
and Flutter, which, from this perspective, may be
regarded as the same clinical condition.

It must be underlined that Shannon Entropy is the
sole HRV measure that exhibits a large and
unmistakable drop during AFIB circumstances,
whilst all other markers either remain constant or
increase. Conversely, AFIB is the only pathology
that can diminish ShE values from normal levels, as
all other pathologies can only elevate ShE values.
This unique characteristic establishes a peculiar
double link between AFIIB and ShE, which, through
the ShE, creates a connection between AFIB and
the Thermodynamic Entropy. This allows one to
view AFIB from a new perspective, as a natural
status where the human body precipitates to, due
to the second principle of thermodynamics, unless
the sinus rhythm is maintained by means of
adequate intake of energy (from food, environment,
and so forth) capable of compensating the growing
thermodynamic entropy and consequently the
declining ShE. This is a hypothesis that may be
better investigated mathematically developed
mathematical modeling in the near future.
Regardless, Shannon Entropy is always the main
HRV metric for AFIB detection, allowing for the

identification of AFIB even while other marker
values remain unchanged. However, in circumstances
where the diagnosis is ambiguous, alarms in other
relevant markers might still be helpful.
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