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Abstract

We consider KdV-type equations with C1 nonhomogeneous non-
linearities and small dispersion ε. The first result consists of the con-
clusion that, in the leading term with respect to ε, the solitary waves
in this model interact like KdV solitons. Next, it turned out that there
exists a very interesting scenario of instability in which the short-wave
soliton remains stable whereas a small long-wave part, generated by
perturbations of original equation, turns to be unstable, growing and
destroying the leading term. At the same time, such perturbation can
eliminate the collision of solitons.
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1 Introduction

We consider a generalization of the KdV equation of the form:

∂u

∂t
+
∂g′(u)

∂x
+ ε2

∂3u

∂x3
= 0, x ∈ R1, t > 0, (1)

where g′(u)
def
= ∂g/∂u ∈ C1 is a real-valued function (for more detail see

below) and ε << 1 is a small parameter. Such equations describe non-
linear wave phenomena in plasma physics. In particular, for some specific
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plasma states, ion-acoustic or dust-acoustic phenomena can be described
by the KdV-type equation (1) with nonlinearities g′(u) = αu3/2 + βu2 or
g′(u) = αu2 + βu3, α, β = const ([1] - [3]). To simplify the situation we
restrict ourselves by non-negative u. Moreover, we assume that uniformly in
u ≥ 0

c1u
1+δ1 ≤ g′(u) ≤ c2u

5−δ2 , (2)

where ci, δi are positive constants. These restrictions imply for ε = const
both the solvability of the Cauchy problem for (1) and the solution stability
with respect to initial data (see [4, 5]).

For homogenous case g′(u) = uκ, κ > 1, it is easy to find explicit solitary
wave solutions (see below). Moreover, as it is well known nowadays, the
solitons interact elastically in the integrable case (κ = 2 and 3). Almost the
same is true for nonintegrable homogenous case: the solitary waves interact
elastically in the principal term in an asymptotic sense, whereas the non-
integrability implies the appearance of small radiation-type corrections ([6] -
[12]). At the same time, the character of the solitary wave collision remains
unknown for arbitrary nonlinearity. The same is true for the solitary wave
stability with respect to right-hand side perturbations. Our aim is to consider
these open problems.

The contents of the paper is the following: in Section 2 we find a class
of nonlinearities which admits soliton type solutions, in Section 3 we demon-
strate the elastic (in the leading asymptotic term) scenario of two soliton
collision, and in the last section we describe the evolution of distorted soli-
tons.

2 Solitary wave solution

Before the search of admissible nonlinearities we should determine the type
of solitary waves which will be under consideration.

Definition 1. A function

u = Aω
(
β(x− V t)/ε,A

)
(3)

is called “soliton type solitary wave” if ω(η, ·) ∈ C∞(R1) is an even function
such that ω(0, ·) = 1, ω(η, ·) < 1 for η ̸= 0, and ∂2ω/∂η2|η=0 < 0. Moreover,
we assume that

ω(η, ·) → 0 as η → ±∞ (4)
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with an exponential rate. Next, we suppose that β = β(A), V = V (A),
ω = ω(·, A) are C1 functions uniformly in the parameter A > 0, and

∂ω(η, A)/∂A→ 0 as η → 0 or η → ±∞. (5)

Theorem 1. Let g(u) ∈ C2(u ≥ 0)
∩

C∞(u > 0) satisfy (2) and be such that

g(u) = u2g1(u), (6)

where the Hölder continuous function g1 satisfies the conditions:

g1(0) = 0, g1(u) > 0 and g′1(u) > 0 for u > 0. (7)

Then the equation (1) has a soliton type solitary wave solution.

To prove the statement it is enough to substitute the desired form (3)
into the equation (1) and integrate it using the condition (4). We obtain

−V ω +
g′(Aω)

A
+ β2d

2ω

dη2
= 0, (8)

which implies

β2

V

(
dω

dη

)2

= ω2

(
1− 2g1(A)

V
G(ω,A)

)
, G(ω,A)

def
= g1(Aω)/g1(A). (9)

Next, ω can be a smooth even function if and only if ∂ω/∂η|η=0 = 0. This
and the normalization condition ω(0, ·) = 1 imply the equality

V = 2g1(A). (10)

In order to simplify the equation we define the free parameter β,

β2 = V, (11)

and obtain the final version of the equation for ω

dω

dη
= ±ω

√
1−G(ω,A), (12)

where the sign should be − for η > 0 and + for η < 0.
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To complete the proof we analyze the implicit representation of ω which
corresponds to (12):

η =

∫ 1

ω

dz

z
√

1−G(z, A)
for η ≥ 0. (13)

By virtue of (7) ω ∼ 1 − c1 η
2 for η → 0 and ω ∼ exp(−c2 η) for η → ∞.

Next, differentiating the both parts of (13) with respect to A, we obtain

∂ω

∂A
=
ω
√
1−G(ω,A)

2g21(A)

∫ 1

ω

zg′1(Az)g1(A)− g′1(A)g1(Az)

z
(
1−G(z, A)

)3/2 dz. (14)

Using (7) and this representation one easily verifies that ∂ω/∂A ∈ C1 and
tends to zero as η → ∞ and η → 0.

Example. The function

g1(z) =
n∑

k=1

ckz
qk , δ1 ≤ q1 < q2 < · · · < qn < 4, ck > 0 (15)

satisfies the conditions (7). If n = 1, then the solution of (12) does not
depend on A and has the form:

ω(η) =
{
cosh

(
q1η/2

)}−2/q1 , V = 2 c1A
q1 . (16)

3 Two-soliton asymptotic solution

3.1 Main definitions

Obviously, there is not any hope to find both the exact multi-soliton solution
to (1) and an asymptotics in the classical sense. So, we will construct a weak
asymptotic solution. The Weak Asymptotics Method (see e.g. [6] - [15] and
references therein) takes into account the fact that soliton-type solutions
which are smooth for ε > 0 become non-smooth in the limit as ε → 0.
Thus, it is possible to treat such solutions as a mapping C∞(0, T ; C∞(R1

x)) for
ε = const > 0 and only as C(0, T ;D′(R1

x)) uniformly in ε ≥ 0. Accordingly,
the remainder should be small in the weak sense. The main advantage of the
method is such that we can ignore the real shape of the colliding waves but
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look for (and find) exceptionally their main characteristics. For the solitons
they are the amplitudes and trajectories of the waves.

Similarly the famous Whitham method we define a weak asymptotic so-
lution as a function which satisfies (in a weak sense) some conservation laws,
in fact two laws for the two-phase asymptotics. For the equation (1) let us
write the first conservation laws in the differential form:

∂Qj

∂t
+
∂Pj

∂x
= ε2

∂3Rj

∂x3
, j = 1, 2, (17)

where the first one is the equation (1) the same, namely

Q1 = u, P1 = g′(u), Q2 = u2, P2 = −2g2(u)− 3(εux)
2, (18)

R1 = u, R2 = u2, g2(u) = g(u)− ug′(u). (19)

Next, we define the smallness in the weak sense:

Definition 2. A function v(t, x, ε) is said to be of the value OD′(εk) if the
relation ∫ ∞

−∞
v(t, x, ε)ψ(x)dx = O(εk)

holds uniformly in t for any test function ψ ∈ D(R1
x). The right-hand side

here is a C∞-function for ε = const > 0 and a piecewise continuous function
uniformly in ε ≥ 0.

As it has been demonstrated in [6, 12], the correct definition of two-soliton
asymptotics is the following:

Definition 3. A sequence u(t, x, ε), belonging to C∞(0, T ; C∞(R1
x)) for ε =

const > 0 and belonging to C(0, T ;D′(R1
x)) uniformly in ε, is called a weak

asymptotic mod OD′(ε2) solution of (1) if the relations (17) hold uniformly
in t with the accuracy OD′(ε2),

∂Qj

∂t
+
∂Pj

∂x
= OD′(ε2), j = 1, 2. (20)

Let us consider the interaction of two solitary waves for the model (1)
with the initial data

u|t=0 =
2∑

i=1

Aiω

(
βi
x− x0i
ε

, Ai

)
, (21)
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where A2 > A1 > 0, x01 − x02 = const > 0 and we assume the same relations
between Ai, βi and Vi as in (10). Obviously, the trajectories x = Vit + x0i
have a joint point x = x∗ at a time instant t = t∗.

Following [6, 12], we write the asymptotic ansatz in the form:

u =
2∑

i=1

Gi(τ)ω

(
βi
x− φi(t, τ, ε)

ε
, Ai

)
, Gi(τ) = Ai + Si(τ). (22)

Here φi = φi0(t) + εφi1(τ), where φi0 = Vit + x0i , are the trajectories of
noninteracting solitary waves;

τ = ψ0(t)/ε, ψ0(t) = β1
(
φ20(t)− φ10(t)

)
,

denotes the “fast time”; the phase and amplitude corrections φi1, Si are
smooth functions such that

φi1(τ) → 0 as τ → −∞, φi1(τ) → φ∞
i1 = consti as τ → +∞, (23)

Si(τ) → 0 as τ → ±∞ (24)

with an exponential rate.

3.2 Asymptotic construction

To construct the asymptotics we should calculate the weak expansions of the
terms from the left-hand sides of the relations (20). It is easy to check that

u = ε

2∑
i=1

a1,i
Gi

βi
δ(x− φi) +OD′(ε3), (25)

where δ(x) is the Dirac delta-function. Here and in what follows we use the
notation

ak,i
def
=

∫ ∞

−∞

(
ω(η,Ai)

)k
dη, k > 0, a′2,i

def
=

∫ ∞

−∞

(
ω′(η,Ai)

)2
dη. (26)

At the same time for any F (u) ∈ C1

∫ ∞

−∞
F

(
2∑

i=1

Giω

(
βi
x− φi

ε
, Ai

))
ψ(x)dx
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= ε
2∑

i=1

1

βi

∫ ∞

−∞
F
(
Aiω(η, Ai)

)
ψ(φi + ε

η

β i

)dη +
ε

β2

∫ ∞

−∞

{
F
(
G1ω(η12, A1)

(27)

+G2ω(η,A2)
)
− F

(
A1ω(η12, A1)

)
− F

(
A2ω(η,A2)

)}
ψ(φ2 + ε

η

β 2

)dη,

where
η12 = θη − σ, σ = β1(φ1 − φ2))/ε, θ = β1/β2. (28)

We take into account that the second integrand in right-hand side (27) van-
ishes exponentially fast as |φ1 − φ2| grows, thus, its main contribution is at
the point x∗. We write

φi0 = x∗ + Vi(t− t∗) = x∗ + ε
Vi

ψ̇0

τ and φi = x∗ + εχi, (29)

where ψ̇0 = β1(V2 − V1), χi = Viτ/ψ̇0 + φi1. It remains to apply the formula

f(τ)δ(x− φi) = f(τ)δ(x− x∗)− εχif(τ)δ
′(x− x∗) +OD′(ε2), (30)

which holds for each φi of the form (29) with slowly increasing χi and for
f(τ) from the Schwartz space. Moreover, the second term in the right-hand
side of (30) is OD′(ε). Thus, under the assumptions (23), (24) we obtain the
weak asymptotic expansion of F (u) in the final form:

F (u) = ε

2∑
i=1

F (Ai)
aF,i
βi
δ(x− φi) + ε

F (A2)

β2
RF δ(x− x∗) +OD′(ε2), (31)

where

aF,i = F (Ai)
−1

∫ ∞

−∞
F
(
Aiω(η,Ai)

)
dη, (32)

RF = F (A2)
−1

∫ ∞

−∞

{
F
(
G1ω(η12, A1) +G2ω(η,A2)

)
(33)

− F
(
A1ω(η12, A1)

)
− F

(
A2ω(η,A2)

)}
dη.

Note that to define ∂u2/∂t mod OD′(ε2) it is necessary to calculate u2 with
the precision OD′(ε3). Thus, transforming (25) with the help of (30) and
using (31) with F (u) = u2, we obtain modulo OD′(ε3):

u = ε
2∑

i=1

a1,iK
(1)
i0 δ(x− φi) + ε

2∑
i=1

a1,iK
(1)
i1

{
δ(x− x∗)− εχiδ

′(x− x∗)
}
,
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u2 = ε
2∑

i=1

a2,iK
(2)
i0 δ(x− φi) + ε

2∑
i=1

{
a2,iK

(2)
i1 + 2ã2

G1G2

β2
R

(0)
2

}
δ(x− x∗)

− ε2
{ 2∑

i=1

a2,iK
(2)
i1 χi + 2ã2

G1G2

β2

(
χ2R

(0)
2 +

1

β2
R

(1)
2

)}
δ′(x− x∗), (34)

where

K
(n)
i =

Gn
i

βi
, K

(n)
i0 =

An
i

βi
, K

(n)
i1 = K

(n)
i −K

(n)
i0 , (35)

R
(i)
2 =

1

ã2

∫ ∞

−∞
ηiω(η12, A1)ω(η,A2)dη, ã2 =

√
a2,1a2,2. (36)

Calculating weak expansions for other terms from the Definition 3 and sub-
stituting them into (20) we obtain linear combinations of δ′(x−φi), i = 1, 2,
δ(x− x∗), and δ′(x− x∗) (see also [6, 7]). Therefore, we obtain:

system of algebraic equations

a1,iViK
(1)
i0 − ag′,i g

′(Ai)/βi = 0, i = 1, 2, (37)

a2,iViK
(2)
i0 + 2ag2,i g2(Ai)/βi + 3a′2,iβ

2
iK

(2)
i0 = 0, i = 1, 2, (38)

system of functional equations

2∑
i=1

a1,iK
(1)
i1 = 0,

2∑
i=1

a2,iK
(2)
i1 + 2ã2

G1G2

β2
R

(0)
2 = 0, (39)

and system of ordinary differential equations

ψ̇0
d

dτ

2∑
i=1

a1,i

{
K

(1)
i0 φi1 + χiK

(1)
i1

}
= f, (40)

ψ̇0
d

dτ

{ 2∑
i=1

a2,i

(
K

(2)
i0 φi1 + χiK

(2)
i1

)
(41)

+ 2
ã2
β2
G1G2

(
χ2R

(0)
2 +

1

β2
R

(1)
2

)}
= F,

where

f =
g′(A2)

β2
Rg′ , ã′2 =

√
a′2,1a

′
2,2, (42)
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F = −2
g2(A2)

β2
Rg2 − 3

{
2∑

i=1

a′2,iβ
2
iK

(2)
i1 + 2ã′2β1G1G2R

(0)
2,1

}
, (43)

and R
(0)
2,1 is of the form (36) for R

(0)
2 but with ã′2, ω

′ instead of ã2, ω.

Lemma 1. The algebraic equations (37), (38) imply again the relations (10),
(11) between Ai, βi, and Vi.

Proof. Let us change A → Ai, V → Vi, β → βi in (8) and integrate it
with respect to η. Then we obtain the equality

a1,iAiVi = ag′,i g
′(Ai), (44)

which is equivalent to (37). Next, let us multiply the original third order
ordinary equation for ω by ω. Integrating we obtain the following alternative
version of (8):

V ω2 + 2
g2(Aω)

A2
= β2

{d2(ω2)

dη2
− 3

(
dω

dη

)2 }
.

Thus

a2,iVi + 2ag2,i
g2(Ai)

A2
i

= −3a′2,iβ
2
i . (45)

At the same time, integration of (9) implies:

a2,iVi − 2ag,i
g(Ai)

A2
i

= a′2,iβ
2
i . (46)

Taking into account (45) we obtain the relation

ag,i g(Ai) = −ag2,i g2(Ai)− 2a′2,iβ
2
iA

2
i , (47)

which implies that (38) is the result of the integration of (9) with respect to
η. Now we square the both parts of (12) and integrate them:

a′2,i = a2,i − ag,i. (48)

Substituting this into (46) we obtain the equality

a2,i
(
Vi − β2

i

)
− ag,i g1(Ai)

(
2− β2

i

g1(Ai)

)
= 0,

which implies the relations (10).
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3.3 Analysis of the model equations (39) - (41)

It is easy to note that the system (39) is equivalent to the quadratic equation

with coefficients which depend on the convolution R
(0)
2 = R

(0)
2 (σ). To analyze

the equation we assume:

Ai >> 1, i = 1, 2, θ << 1. (49)

Moreover, let the function g1 be of the form (15). Then (10), (11) imply the
relation

Ai = c′βq′

i

(
1 +O

(
A

qn−1−qn
i

))
, q′ = 2/qn, c

′ = (2cn)
−1/qn , i = 1, 2. (50)

Let us define the following notation:

κi =
Si

βi

(
c′βq′−1

2

)−1

, i = 1, 2. (51)

Definition 4. A function f(τ, θ) is said to be of the value OS(θ
k) if there

exists a function s(τ) from the Schwartz space such that the estimate

|f(τ, θ)| ≤ c θk|s(τ)| (52)

holds uniformly in τ for a constant c > 0.

We note also that, under the condition (23), the convolution R
(0)
2 → 0 as

τ → ±∞ with an exponential rate.
Assumptions (49) and (15) allow to prove the statement:

Lemma 2. Let the assumptions (15), (49) be satisfied. Then the algebraic
equations (39) have a unique solution S1, S2 with the property (24). More in
detail, for sufficiently small θ we find

κ1 =

√
a2
a1

θq
′
R

(0)
2 +OS(θ

2 + θ2q
′
), κ2 = −a1κ1, ai = ai,1/ai,2. (53)

Now let us simplify the equations (40), (41). We note firstly that in view
of the first equation (39) and the identity

β1(χ1 − χ2) = σ (54)
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one can eliminate χi from the left-hand side of (40), since

2∑
i=1

a1,i
{
K

(1)
i0 φi1 + χiK

(1)
i1

}
=

2∑
i=1

a1,iK
(1)
i0 φi1 + a1,1

σ

β1
K

(1)
11 .

Simplifying in the same manner the equation (41), we transform (40), (41)
to the following form:

ψ̇0
d

dτ

{ 2∑
i=1

a1,iK
(1)
i0 φi1 + a1,1

σ

β1
K

(1)
11

}
= f, (55)

ψ̇0
d

dτ

{ 2∑
i=1

a2,iK
(2)
i0 φi1 + a2,1

σ

β1
K

(2)
11 + 2ã2θK

(1)
1 K

(1)
2 R

(1)
2

}
= F, (56)

where f and F are defined in (42), (43).
The second step is the elimination of φi1 from the model system. To do

it we divide σ into the growing β1(V1 − V2)τ/ψ̇0 = −τ and the bounded (if
the assumptions (23) are satisfied) σ̃ = σ + τ parts. Since

φ11 = φ21 + σ̃/β1, (57)

we obtain from (55)

ψ̇0
d

dτ

{
r1φ21 +

σ

β1
K

(1)
1

}
=

f

a1,1
− ψ̇0

β1
K

(1)
10 . (58)

Here and in what follows we use the notation

rj =
2∑

i=1

aj,i
aj,1

K
(j)
i0 for j = 1 and j = 2. (59)

Now, transforming (56) in the same manner and applying the first assumption
(23) we pass to the problem:

d

d τ
Q(σ) = F(σ),

σ

τ

∣∣∣
τ→−∞

→ −1, (60)

where

Q =
σ

β1

{
K

(2)
1 − r2

r1
K

(1)
1

}
+

2√
a2
K

(1)
1 K

(1)
2 R

(1)
2 ,

F = − 1

β1

{
K

(2)
10 − r2

r1
K

(1)
10

}
+

1

ψ̇0

{ 1

a2,1
F − r2

a1,1r1
f
}
.

Sufficiently simple analysis of the equation (60) implies the statement:
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Lemma 3. Under the assumptions (15), (49) Q(σ) ∈ C2(R1) and F(σ) ∈
C1(R1). Moreover, the following relations hold:

dQ

dσ
= −A1A2

β2
1

{ ā2
ā1

− θq
′
+OS(θ + θq

′
)
}
, (61)

F =
A1A2

β2
1

{ ā2
ā1

− θq
′
+OS(θ + θq

′
)
}
. (62)

The uniform in τ inequality F > 0 and the exponential type behavior
of F and Q imply the existence of the function σ such that σ̃ = σ + τ is
bounded and tends to its limiting values with an exponential rate. This and
the equalities (57), (58) justify the existence of the required phase corrections
φi1 with the property (23).

The main result of this section is the following:

Theorem 2. Let the assumptions (15), (49) be satisfied. Then the solitary
wave collision in the problem (1), (21) preserves the elastic scenario with
accuracy OD′(ε2) in the sense of Definition 2. The weak asymptotic solution
has the form (22).

t

x

u

 

-5

 

15

 

t = 3.5

 

Figure 1: Evolution of two solitary waves with A1 = 1.5 and A2 = 0.5 for (1)
with the nonlinearity g′ = u3/2 + u2.

The next theorem allows us to treat the weak asymptotics (37) in the
classical sense:
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Theorem 3. Let the assumptions (15), (49) be satisfied. Then the function
u of the form (22) is a weak asymptotic mod OD′(ε2) solution of (1) if and
only if u satisfies the following conservation and balance laws:

d

dt

∫ ∞

−∞
u dx = 0,

d

dt

∫ ∞

−∞
u2dx = 0, (63)

d

dt

∫ ∞

−∞
xu dx−

∫ ∞

−∞
g′(u)dx = 0, (64)

d

dt

∫ ∞

−∞
xu2dx+ 2

∫ ∞

−∞
g2(u)dx+ 3

∫ ∞

−∞

(
ε
∂u

∂x

)2

dx = 0. (65)

To prove the Theorem 3 it is enough to rewrite the equalities (37) - (41)
as integrals of the function (22) and its derivatives.

Results of direct numerical simulations confirm the traced asymptotic
analysis. Figure 1 depicts the collision of two solitons for the nonlinearity
g′ = u3/2 + u2 in the case ε = 0.1 (see also [11] for the nonlinearity u3/2).

4 Dynamics of perturbed solitary waves

In this section we consider briefly the perturbed KdV-type equation (1),

∂u

∂t
+
∂g′(u)

∂x
+ ε2

∂3u

∂x3
= F, (66)

where F = F (x, t, u, εux, ε
2uxx, . . . ) ∈ C∞ is “small” for rapidly varying

functions. We assume that F |u≡0 = 0.
Let us construct firstly a self-similar one-phase asymptotic solution and

discuss after that how to use this asymptotics for more realistic Cauchy data.
According to results [10, 12] to construct the leading term of the classical

one-phase asymptotic solution it is enough to find the weak asymptotics. For
the equation (66), instead of conservation laws, we have the balance laws

∂Qj

∂t
+
∂Pj

∂x
+Kj = ε2

∂3Rj

∂x3
, j = 1, 2, (67)

where K1 = −F , K2 = −uF , and all others terms are the same as in (18),
(19).

By analogy with Definition 3 we write:
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Definition 5. Let a sequence u(t, x, ε) belong to the same functional space
as in Definition 3. Then u(t, x, ε) is called a weak asymptotic mod OD′(εq)
solution of (66) if the relations

∂Qj

∂t
+
∂Pj

∂x
+Kj = OD′(εq), j = 1, 2 (68)

hold uniformly in t ∈ (0, T ). Here q = min{1 + q1, 2}.

Combining the ideas of [16, 17] and [10, 12] we write the ansatz in the
form:

u = Aω
(
β(x− φ(t))/ε,A

)
+ εY (τ, t, x), (69)

where A = A(t), β = β(t), and Y is a smooth bounded function such that
Y (τ, t, x) → 0 as τ → +∞, and Y (τ, t, x) → u−(x, t) as τ → −∞. Note that
(69) can be treated as a ”two-phase” asymptotics since

u = εa1
A

β
δ
(
x− φ(t)

)
+ εu−(x, t)H

(
φ(t)− x

)
+OD′(ε2), (70)

and the coefficient of the Heaviside function H varies slowly.
We take into account the relations

g′(u) = ε
ag′

β
g′(A)δ

(
x− φ(t)

)
+OD′(εq), (71)

F = ε
aF0

β
F̄ δ
(
x− φ(t)

)
+ εF ′

u|u≡0u
−(x, t)H

(
φ(t)− x

)
+OD′(ε2), (72)

where we use the notation (32), F̄ = F (φ, t, A, βA, . . . ), F0 = F (φ, t, Aω,
Aβω′, Aβ2ω′′, . . . ). Next, calculating others weak expansions and substitut-
ing them into (68) we obtain linear combinations of δ(x−φ), δ′(x−φ), and
H(φ− x). Therefore, we pass to the following system:

a1A
dφ

dt
= ag′g

′(A), a2
dφ

dt
+ 2ag2

g2(A)

A2
+ 3a′2β

2 = 0, t > 0, (73)

d

dt

(
a2
A2

β

)
= 2aωF0

A

β
F̄ , t > 0, (74)

∂u−(x, t)

∂t
= F ′

u(x, t, 0, . . . )u
−(x, t), t > 0, x < φ(t), (75)

u−(φ, t)
dφ

dt
+
d

dt

(
a1
A

β

)
=
aF0

β
F̄ t > 0. (76)
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Lemma 1 implies that the equations (73) are equivalent to the equalities

dφ

dt
= β2, β2 = 2g1(A). (77)

Thus, the equations (74), (77) form the complete system to define φ, A, and
β. We supply the equations by the Cauchy data:

φ|t=0 = φ0, A|t=0 = A0, (78)

where φ0 and A0 > 0 are arbitrary numbers.

Lemma 4. Under the assumptions (6), (15) the problem (74), (77), (78)
has the unique solution.

For the proof it is enough to demonstrate that the inequality

IA =
d

dA

(
a2
A2

β

)
> 0 (79)

holds uniformly in A > 0. Indeed, using the representation (13) we obtain:

IA =
A√
2

∫ 1

0

z(
g1(A)− g1(Az)

)3/2JA(z)dz, (80)

JA(z) = 4
(
g1(A)− g1(Az)

)
− A

(
g′1(A)− zg′1(Az)

)
.

Furthermore, for the nonlinearity of the form (15) we have:

g1(A) > g1(Az), JA(z) =
n∑

k=1

ck(4−qk)Aqk(1−zqk) > 0 uniformly in z ∈ (0, 1)

since qk ∈ (0, 4), k = 1, . . . n.

Let us turn to the correction u−. The equation (76) defines the boundary
value of u− on the curve x = φ(t) for t > 0. Thus, the problem to define the
“tail” u− consists of the equation (75) for x < φ(t), t > 0, and the boundary
condition:

u−|x=φ(t) = u−b (t) for t ≥ 0, u−|t=0 = u−0 (x) for x ≤ φ(0), (81)

where

u−b (t) =
1

β3

{
aF0F̄ − β

d

dt

(
a1
A

β

)}
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and u−0 is a smooth function such that u−0
(
φ(0)

)
= u−b (0). The solvability of

this problem is obvious since dφ/dt = β2 > 0. However, to obtain u− ≥ 0
we should suppose:

aF0F̄ ≥ β
d

dt

(
a1
A

β

)
, u−0 ≥ 0. (82)

This completes the asymptotic construction and we pass to the main result
of the last section:

Theorem 4. Let the assumptions (6), (15) be satisfied. Then the function
u of the form (69) is a formal asymptotic mod O(εq) soliton-type solution of
(66). The conditions (82) guarantee the fulfilment of the inequality u ≥ 0.

t

x

u

  

-10 10

  

t = 1.5

Figure 2: Perturbation of the solitary wave with A(0) = 4 < A∗

Let us stress finally that the self-similarity implies a special choice of the
initial data. In particular, the initial function Y (τ, 0, x) should be of the
special form

Y (τ, 0, x) =
{
u−0 (x)χ(τ, t) + Z1(τ, t) + c1ω

′(τ, A)
}∣∣∣

t=0
, (83)

where χ(τ, t) is a regularization of the Heaviside function, Z1(τ, t) is a special
function from the Schwartz space, and c1 is arbitrary constant (see [16, 17]).
If it is violated and, for example,

u|t=0 = A(0)ω
(
β
(
x− φ(0)

)
/ε, A(0)

)
, (84)
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then the perturbed soliton generates a rapidly oscillating tail of the amplitude
o(1) (the so called “radiation”) instead of the smooth tail εu−(x, t) (see [18]
for the perturbed KdV equation and numerical results in [9]). However,
εu−(x, t) describes sufficiently well the tendency of the radiation amplitude
behavior.

t

x

u

  

-10 10

  

t = 1.8

Figure 3: Perturbation of the solitary wave with A(0) = 6 > A∗

Example 1 [11]. Let g′(u) = u3/2 and let

F = − ε

2b

∂

∂x
u2+ε

b

2

∂

∂t

{u2
2b

−u3/2−ε2∂
2u

∂x2
−1

2

∂

∂t

∫ x

−∞
u dx′

}
, b = const . (85)

This right-hand side represents the remainder which was omitted in [1] in the
process of the regular asymptotic construction. At the same time, for large x
and t singular perturbations can appear and we should estimate the influence
of (85) on the solitary wave. However it is easy to check that aωF0 = 0, thus
A = const. Consequently, u−(φ, t) = 0 and u−(x, t) ≡ 0. This justifies the
elimination of F from the leading terms of the asymptotics.

Example 2. Let

g′(u) = u3/2 + u2, F = u(µ− νu), (86)

where µ > 0 and ν > 0 are constants. Then the equation (74), supplied by
the initial condition, takes the form:

dA

dt
= 2νa3

A2

β
I−1
A

(µa2
νa3

− A
)
, A|t=0 = A0, (87)
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Figure 4: Destruction of the solitary wave.

where IA has the form (80) with g1(z) = 2
√
z/5 + z/3 and

ak = 2

∫ 1

0

zk−1√
1−G(z, A)

dz.

One can prove that there exists a critical amplitude A∗ = A∗(µ/ν) such that
A decreases to A∗ if A0 ≥ A∗ or A increases to A∗ if A0 ≤ A∗

α. In particular,
A∗ ∼ 4.9012 for µ = 2 and ν = 0.5. Next, integrating the equation (77), we
conclude that the curve x = φ(t) tends to a straight line as t → ∞. Thus,
the solitary wave demonstrates a stable behavior.

Let us turn to the correction u−. Preserving the term O(ε), we write the
equation (75) as following:

∂u−

∂t
= u−(µ− ενu−). (88)

Thus, the amplitude of u− increases exponentially fast with the rate O(µ).
Moreover, it tends to the value O(1/ε), so that the correction εu− becomes
of the same value as the leading term in a critical time T ∗ ∼ µ−1 ln(µ/(εν)).

Results of numerical simulation confirm this analysis. Namely, we con-
sider the Cauchy problem (66), (84), (86) with µ = 2 and ν = 0.5. Since
the initial value does not include the correction of the form (83), the soli-
ton correction is not a smooth tail εu−(x, t), but the radiation. Note that
the behavior of the correction’s amplitude is explicitly the same as it been
described above, see Figures 2 and 3 for a sufficiently small time instant.
However, when the time tends to its critical value the soliton structure can
be destroyed, see Fig. 4 for the case g′(u) = u3/2 [11].
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t

x

u

  

  

−11 9

t = 1.4

Figure 5: Evolution of the noninteracting solitary waves

5 Conclusion

In fact, the result that each equation from the family (1) preserves the KdV-
type scenario of soliton interaction was rather expected. It was found much
more interesting to consider the behavior of perturbed solitary waves. It
turned out that there exists a class of perturbations which provoke a very
interesting scenario of instability development: a short solitary wave (with
the wave-length ∼ ε) varies its parameters, remaining stable but generating
a long wave perturbation (with the wave-length ∼ εν , ν < 1) of a small am-
plitude. Inversely, this perturbation turns out to be unstable, its amplitude
increases and destroys the original soliton.

On the other hand, the rate of the perturbation growth can be slow (of
the order O(µ) with µ << 1 for the external force (86)), whereas the ampli-
tudes of solitons tend to the same stationary value A∗

α. So, for sufficiently
small µ (for sufficiently large distances between the original positions of the
solitons), the amplitudes can be almost of the same value before the colli-
sion of solitons, which prevents the intersection of the trajectories. In other
words, the perturbation can eliminate the interaction between solitons. To
illustrate the situation we refer to Figure 5, where the dynamics of two soli-
tons is depicted for the problem (66), (84), (86) with µ = 2, ν = 0.5, and the
original amplitudes A2(0) = 7, A1(0) = 4.5.
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