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Abstract 

Fermi-Dirac (FD) distribution function is 

generally known as Fermi-Statistics (FS) 

applicable for non-degenerately doped 

semiconductors, because in this case, the band 

structure prevails. As the dopings are increased 

strongly, the semi-conductor is degenerate and 

its band-structure is perturbed with the 

formation of band-tail. It is convinced that the 

FD distribution function must be revisited for 

modification under this present condition. In the 

present attempt, modified Fermi-statistics has 

been derived for the degenerate semiconductor 

having band-tail due to Gaussian distribution of 

the impurity potential. Unlike FS for non-

degenerate semi-conductor, which is an 

exponential function, our present result is 

general, involving exponential and error 

functions with series summation solution. In the 

classical limits, the normal FS and the Maxwell-

Boltzmann’s (MB) distribution functions can be 

retrieved for non-degenerate semiconductor 

from our results. Also, MB distribution function 

for degenerate dopings are obtained from our 

approximate results of the general conclusions. 
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1. Introduction 

It is well-known that electrons and 

holes are free particles in conduction band 

(CB) and valence-band (VB) under thermal 

equilibrium with the lattice. At absolute zero 

temperature, the energy of an electron is at 

ground state. At a higher temperature, the 

particles are moving with the thermal 

energy, when no external fields are applied. 

So, in thermal equilibrium, the probability of 

a given energy state, being occupied, will be 

a function of temperature. Also, by Pauli 

Exclusion Principle [1], the occupation 

probability of an electron at an energy state 

is ½. Therefore, in thermal equilibrium with 

the lattice, the electron probability 

distribution function among the available 

energy levels is named Fermi-Dirac statistics 

[2-4]. This function, giving the occupancy of 

the energy levels, (also often called Fermi-

Statistics) is [5]: 

F (E, Ef, T) = 
 

{       
    ̅̅ ̅   

   
 }

          ……… (1) 

where,     ̅̅ ̅ 
 is the energy state at the wave-

vector,    ̅̅ ̅ ; Ef is the maximum available 

energy level, called Fermi-energy or Fermi-

level,    is the Boltzmann’s constant, T is 

the temperature. 

In a lightly doped semiconductor, the 

band structure of a pure material may be 

assumed to prevail [4]. A semiconductor is 

said to be lightly doped or non-degenerate, 

when the condition, (0.02 (aD.ni
1/3

) <1.0) is 

satisfied [6], where aD is the Bohr’s radius of 

the impurity state and ni is the impurity 

concentration. For the lightly doped, the 

potential wells associated with the impurity 

atoms are isolated from each other and the 

impurity potential, V ( ̅) ≈0.0 at the local 

point ( ̅). Therefore, Eq. (1) is valid for the 

lightly doped semiconductors, when     ̅̅ ̅  

remains same as the host materials, and Ef 

lies within the Forbidden band [4]. Here, we 

can approximately assume that the wave-

function of the outer electrons of the 

impurity atom covers a large number of 

atoms of the host crystal. With the increase 

of impurity dopings, the semiconductor is 

degenerate for strongly doped condition. In 

this case, the concentration of impurity 

dopings satisfies the limits: (aD.ni
1/3

 >1.0) 

[6]. The nature of impurity levels differ 

radically in strongly doped and in lightly 

doped materials and for the former case, the 

impurity levels are transformed into 

Gaussian bands [4]. Electrons occupying 

these bands, take part in transport 

phenomena [4]. For this, the impurity 

potential, V( ̅) of the wells has some non-

zero value and the Gaussian distribution of 

the impurity potential is given by [7, 8]. 

G(V( ̅)) = 
      

     ̅ 

  
  

√   
 

                           ……… (2) 

where,    is the variance of G (V) and is 

known as impurity screening potential. The 

amount of impurities doped is decided by the 

parameter,   . For    0, is the undoped 

semiconductor. 

It has been experimentally observed 

that band-tail exists in semiconductor 

devices made of degenerately doped 

materials [9-12]. This is because of the 

Gaussian band impurity potential, which 

interacts with the electrons in the conduction 
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band (CB), so that CB is perturbed forming 

band tails. For the lightly doped 

semiconductor, no tail is present and hence 

the band remains un-perturbed. Therefore, it 

is expected that the Fermi statistics (FS) 

must be different for the degenerately doped 

semiconductor as compared to the same (FS) 

for un-perturbed band state. To the best of 

our knowledge, such a study of (FS) has not 

been done as yet in literatures for degenerate 

semiconductors. In what follows, we shall 

provide the derivation of the FS for 

degenerately doped with perturbation to the 

semiconductor. The results obtained are 

general and exact and are involved with 

exponential and error functions having series 

summation solution. 

2. Derivation of the Fermi-

statistics for degenerately doped 

semiconductors. 

Assuming an un-perturbed parabolic 

band, the volume occupied by the impurities 

enclosed by the Fermi-surface, is fixed. With 

the formation of a tail, the total volume 

covered by the impurities is the sum of the 

Fermi-surface of the un-perturbed band 

region and the Fermi-surface bounded by the 

tail region. So, for an extrinsic 

semiconductor, the volume of the available 

occupied states are more that of the volume 

for the intrinsic semiconductor with non-

degenerately doping system. Therefore, it is 

expected that the probability that the 

impurities can occupy the energy state with 

tail is more than that of the no-tail system. 

For the estimation of this probability, an 

interaction of the impurity band with the 

energy state of the FD function must be 

considered with the Gaussian distribution 

function and the Schr ̈dinger equation [4]; 

 

 

E=V ( ̅)+ 
    

   
   ….……(3) 

    ̅̅ ̅ 
 =

    

   
 = E- V ( ̅)         ……… (4) 

where,   is the reduced Planck’s constant, 

   is the effective electron mass and E is the 

total electron energy. Equation (4) is valid 

for degenerately doped semiconductor, 

assuming a non-zero value of V ( ̅). 

Therefore, the Fermi-statistics for the 

degenerately doped semiconductor, when the 

kinetic energy (K.E.) is taken at a local point 

( ̅), is [5-6]. 

F (    ̅̅ ̅ 
, Ef, T) = 

 

       
(
    

           ) 

   
 

            ……… (5) 

Electrons move with the K. E. in a 

semiconductor at thermal equilibrium. 

Therefore, using Eqs. (4) and (5), we get 

F ( ̅, V, T) = 
 

       
(        )     ̅ 

   
 

                                                                           ……… (6) 
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where,  ̅  = E- Ef                                                                                            ……… (7) 

Therefore, Eq. (6) represents the 

occupation probability for a degenerately 

doped system, when the impurities are 

denoted by V ( ̅). For different values of V 

( ̅), we have different occupation 

probability. 

Let D ( ̅ ,  , T) be the total 

occupation probability of the degenerately 

doping semiconductor. This can be obtained 

by taking the convolution of F ( ̅, V, T), and 

G (V ( ̅)), in order to consider the interaction 

of the energy state and the potential energy. 

Thus, we have, 

D ( ̅ ,   , T)=    〈    ̅     ̅            ̅  〉average over     ̅  

= ∫      ̅       
 

    
 . 

 

√   
 
 .       

   

  
  .dV 

= 
 

√   
 
  .∫

      
   

  
     

       
 ̅  

   
 

 ̅          

    
                                 ……… (8) 

It is noticed that the limits of V ( ̅) 

exists from -∞ to +∞ and the maximum 

value of     ̅  is taken as  ̅  = (E- Ef). 

Therefore, Eq. (8) is the representation 

of the Fermi-Statistics for degenerately 

doped semiconductor having band-tail. 

With the substitution, x= 
 ̅  

   
 in        

Eq. (8) and carrying out some algebraic 

manipulations, we get, 

D ( ̅ ,  , T)=
   

  
⁄

√ 
  ∫

       
 ̅ 

   
  

     

  
     

         

 

   
         ……… (9) 

Eq. (9) can be re-written as 

D ( ̅ ,  , T)=
   

  
⁄

√ 
   ∑         

   .Im                                          ………..(10) 

where, m is the number of terms in the 

series. 

Im =∫                    
 ̅      

  
   

   
]                                    ……… (11) 
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The solution of the integration in Eq. 

(11) is given by [13] 

 

Im  =
√ 

 
. 

  

   
 .exp [-(

 ̅  

   
) + (

  

    
    ]. Erfc[-{

 ̅

  
   (

  

    
) }]  ……… (12) 

Substituting Im from Eq. (12) into Eq. 

(10), the final results are obtained, 

independent of V(  ̅  as 

D ( ̅ ,  , T)= 1/2  ∑          
   . exp [-(  

 ̅

   
) + (

  

    
    ]*[1+erf(

 ̅

  
   (

  

    
)   } ………(13) 

where, [13] 

Erfc(z) = 1- erf(z) ≡  complementary error function 

and erf(-z) = -erf(z) ≡  error function,       ……… (14) 

Equation (13) is the required 

expression containing exponential and error 

functions (erf(z)) with a series summation 

solution for Fermi-statistics under 

degenerately doped system; the degree of 

degeneracy of the dopings being denoted by 

  . 

Several limiting cases: 

(a) We have seen earlier that for an 

un-doped semiconductor,   →0. 

Under this limiting condition, we find 

from Eq.(13) 

D ( ̅ ,  , T) = 
      

 ̅

   
  

        
 ̅

   
  
 

=
 

        
    

   
  

            ………(15) 

≡ Conventional Fermi-statistics for un-doped case [4]. 

Therefore, we conclude that D ( ̅ ,  , 

T) (Eq.(13)) is the Fermi-statistics for 

degenerately doped semiconductor.  

(b) Equation (13) can be further 

simplified under limiting condition: 

Approximate solution to error 

function, erf(z), appearing in Eq.(13) can be 

given by [13] 
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erf(z) ≈            
     

            }       ……… (16) 

z= [ 
 ̅

  
   (

  

    
)              ……….(17) 

t= 
 

       
, 

and p= 0.47047,   = 0.34802,   = - 0.09587,    = 0.74785 

Using Eqs. (16) and (17), we can 

approximately  compute erf(z) for given 

values of  ̅ ,  , T and m. The computed 

erf(z) value can be substituted into Eq.(13) 

to get the value of D ( ̅ ,  , T). 

(c) Limiting case: Assume that 

0<  <1.0 

So that ( 
 ̅

  
   >> 1.0 and (

  

    
)  

    

This is the moderately doping case but 

not the non-degenerate or un-doped 

condition. Therefore, for the above 

approximations, we get 

z
2
 ≈ ( 

 ̅

  
     >>1.0 

and hence erf(z) ≈ 1.0         ……… (18) 

Therefore, from Eqs.(13), (16) and 

(18), with moderately dopings, we obtain: 

D ( ̅ ,  , T)≈  ∑          
   . exp [-(  

 ̅

   
) +  

  

    
    ]    ……… (19) 

Equation (19) represents the Fermi-

statistics for moderately doping system; here 

M is the maximum value of m, so that right 

hand side converges. 

(d) Limiting case: (
  

    
    << 1.0 

that is for very low doping condition: we 

arrive at Eq. (15) from Eq. (19). 

Also, with this limiting range of 

dopings, and for m=1, (the first term in the 

summation series), we obtain: 

D ( ̅ ,  , T)≈ exp[-  
    

   
          ……… (20) 

Equation (20) shows that Maxwell-

Boltzmann’s distribution function (MB) 

[14], derived from our general results and is 

valid for non-degenerate semiconductor. 

(e) Taking m=1 in Eq.(19) and 

(
  

    
)<1.0, the Maxwell-Boltzmann’s 

distribution function with moderately doped 

condition  can be written as 

D ( ̅ ,  , T) ≈ exp[- (
    

   
)   

  

    
 
 
        ……… (21) 
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3. Results and discussion 

Table 1 shows a comparative study of 

FS and MB statistics under (i) un-doped and 

(ii) various moderately doping conditions of 

semiconductors, for different positive values 

of  ̅  = (E- Ef ) (in (ev)) and    (eV) at 

T=300
o
K. Data presented in Table 1 are 

obtained by computer calculations using 

different equations, mentioned therein. For 

FS with moderately dopings, taking various 

values of  ̅ and   , D ( ̅ ,  , T) are 

calculated using Eq. (19). When F( ̅  T) are 

calculated using Eq. (15) for several values 

of  ̅, independent of   . Different calculated 

values are shown in Table 1. It is noticed 

that for   =0, F( ̅  T) and D ( ̅ ,  , T) 

provide the same values. This implies that 

Eq. (19) is the general representation of  

degenerately dopings and Eq. (15) is the 

special case of the former, with un-doped. 

Similarly, MB statistics with moderately 

dopings show different values using Eq. (21) 

as compared to Eq. (20) valid for un-doped 

case. Finally, we conclude that the positive 

values of  ̅  = (E- Ef) implies that Ef lies 

within forbidden band [4] for un-doped 

condition as expected from our earlier 

discussions. 

Table 1. A comparative study of Fermi-Statistics(FS) and Maxwell- Boltzmann’s(MB) statistics 

under (i) un-doped and (ii) Moderately doped system of semiconductors, for various values of  ̅ 

= (E- Ef) (eV) and   (eV) at T=300
o
K. 

T=300
o
K Fermi-Statistics (FS) Maxwell-Boltzmann’s Statistics(MB) 

Un-doped Moderately Doped Un-doped Moderately Doped 

 ̅ = (E- Ef)  

(ev), Eq.(7) 

F( ̅,T),  

Eq.(15) 

  (eV) D ( ̅ ,  , T) 

Eq.(19) 

Max. no. 

of Terms 

(M) 

    ( 
 ̅

   
) 

Eq.(20) 

Exp[-(
 ̅

   
)   

  

    
      

Eq.(21) 

(M) 

1.0×10
-3

 0.490352422 0.0 

1.0×10
-4

 

3.0×10
-4

 

5.0×10
-4

 

0.4903211 

0.490312576 

0.49009341 

0.479456216 

250 

,, 

,, 

,, 

0.962140143 0.962140143 

0.962143719 

962172389 

962229729 

1 

,, 

,, 

,, 

1.0×10
-2

 0.404692292 0.0 

1.0×10
-3

 

3.0×10
-3

 

5.0×10
-3

 

0.4046920564 

0.404706746 

0.40478453 

0.372115791 

33 

,, 

,, 

,, 

0.67980361 0.67980361 

0.68005681 

0.682085812 

0.686162055 

1 

,, 

,, 

,, 

5.0×10
-2

 0.126777485 0.0 

1.0×10
-3

 

3.0×10
-3

 

5.0×10
-3

 

0.1267775 

0.126808256 

0.127054334 

0.0.12754561 

33 

,, 

,, 

,, 

0.145183489 0.145183489 

0.145237565 

0.145670906 

0.146541446 

1 

,, 

,, 

,, 

1.0×10
-1

 0.020641244 0.0 

1.0×10
-3

 

3.0×10
-3

 

5.0×10
-3

 

0.0206431244 

0.020650334 

0.0207081679 

0.0208242089 

33 

,, 

,, 

,, 

0.0210782439 0.0210782457 

0.0210860968 

0.0211490095 

0.0212753993 

1 

,, 

,, 

,, 
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4. Conclusions 

Our results on Fermi-Statistics for 

degenerately dopings with impurities 

forming band-tail are worked out exactly 

and are general representations, with 

exponential and error functions having series 

summation solution. In the classical limiting 

cases, the conventional Fermi-statistics and 

the well-known Maxwell-Boltzman’s 

distribution functions are obtained from our 

general results for non-degenerate and 

moderately doped semiconductors. These 

results might find more usefulness in the 

semiconductor device physics. Although the 

experimental verification of the basic 

content of this communication is not 

available in the literature to the best of our 

knowledge, the theoretical models as given 

here would be needful in analyzing the 

experimental data when they appear. 
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