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Abstract

A self-consistent chiral Dirac-Hartree-Fock (CDHF) approximation generated by an effec-

tive model of the (σ, ω, π) quantum hadrodynamics is discussed and applied to nuclear matter

and neutron stars. The CDHF approximation maintains conditions of thermodynamic consis-

tency connected to the fundamental requirement of Density Functional Theory (DFT). The

self-consistent conditions to nuclear matter approximations generate functional equations for

self-energies; accurate and rigorous solutions to self-energies are obtained and examined. The

difference of solutions constructed by thermodynamic consistency (or DFT) and Feynman di-

agram approach is compared and discussed explicitly, which should be declared as an open

question for many-body theory.

Exchange interactions are more important than direct interactions at nuclear matter satu-

ration density, which suggests that an appropriate nuclear ground state approximation be the

HF approximation rather than the mean-field (Hartree) approximation. The current CDHF

approximation produces incompressibility and symmetry energy, K = 218 MeV and a4 = 21.3

MeV. The application to neutron stars yields Mmax
star /M⊙ = 2.21 in the unit of solar mass and

radius R = 11.6 km, which improves mean-field results.
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1 Introduction

The relativistic mean-field models of Quantum Hadrodynamics (QHD) have provided a realistic

description of bulk properties of finite nuclei, finite Fermi systems, nuclear matter and neutron

stars [1–9], and they have been extended to effective models of the chiral (σ, π, ω, ρ) hadronic

theories [10–13]. Historical motivations, successes and difficulties, evolutions and revolutions,

reinterpretations and rebuttals are substantially discussed in chaps. 2 and 3 of the reference [13].

While the mean-field approximations to various nonlinear and chiral QHD models have been

applied to properties of nuclear matter and neutron stars, the mean-field approximations intro-

duced by replacing meson fields with classical fields are all equivalent to the Hartree approxima-

tion. The equivalence can be shown by self-consistent renormalization of physical quantities in

terms of thermodynamic consistency [14,15], or by Landau’s quasiparticle hypothesis [16,17] and

the fundamental requirement of self-consistency in Density Functional Theory (DFT) [18,19].

Because the Hartree and Fock-exchange interactions have the same order of magnitude in

terms of coupling constants, the mean-field approximation had to be extended to Hartree-Fock

approximation [20–24]. However, due to theoretical and numerical difficulties to determine phys-

ical quantities in pseudo-scalar pion models [25–31], vacuum (ultra-violet) contributions [32], the

problem of self-consistency in the Hartree-Fock approximation is not sufficiently examined and

investigated. The theoretical and computational problems are related to self-consistent single

particle energies, retardation effects and truncation schemes of higher order interactions. Self-

consistency demands renormalization of physical quantities and requires the effective masses of

nucleons and mesons, M∗,m∗
σ,m

∗
π,m

∗
ω, effective coupling constants, g∗σ, g

∗
π, g

∗
ω, and redefinition

of sources for equations of motion. It can be proven that nonlinear mean-field approximations

are equivalent to Hartree approximations with correctly renormalized effective masses and ef-

fective coupling onstants [7, 8, 14, 15]. The self-consistent quasiparticle formalism produces

density-dependent relations among physical quantities at saturation. In the current paper, the

empirical value of binding energy at saturation is taken as −15.75 MeV at kF = 1.30 fm−1 (at

baryon density ρB = 0.148 fm−3).

Historically, self-consistency has been discussed as the Hugenholtz-Van Hove (HV) theo-

rem [33], which requires the equality between the Fermi energy and the average energy of a

physical system at the density of zero pressure (at nuclear matter saturation point). If one

fails to maintain the equality, the nuclear matter saturation properties will become ambigu-

ous, and it is not possible to draw reliable conclusions for the nuclear matter calculations [34].

The HV theorem is generalized to the property of conserving approximations [35, 36], thermo-

dynamic consistency [14, 15] with Landau’ requirement of quasiparticles and equivalently, as

the fundamental requirement of DFT [18,19]. At present, the quantum many-body systems in

equilibrium and non-equilibrium systems are active fields of research [37–40].

The self-consistency can be stated explicitly as follows: by starting from a Lagrangian or

a Hamiltonian, one can derive the energy density, E , and hydrodynamic pressure, Phy, from
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energy-momentum tensor. One can also obtain the thermodynamic pressure PT by applying

the thermodynamic relation to the energy density: PT = ρ2B
∂ (E/ρB)

∂ρB

. Moreover, one can

define the HV pressure: PHV = ρBE(kF )−E , according to the HV theorem and Gibbs relation

in thermodynamics, where E(kF ) is the single particle energy derived from an approximation.

Therefore, consistency conditions will require that approximations have to maintain the equality

of pressures Phy = PT = PHV and the minimum property of binding energy at saturation

density of nuclear matter, Phy = PT = PHV = 0, simultaneously (Phy = PT is called the virial

theorem [41]). This is the fundamental constraint for nuclear matter approximations. Hence,

before calculating any experimental properties of nuclear physics, one must discuss and show

the fundamental constraints whether one’s approximation maintains the above conditions.

The consistency is also examined as the equality of single particle energy defined in the poles

of Green’s function, EG(kF ), and the quasiparticle energy defined by Landau’s hypothesis,

δE/δni = EL(kF ). The relation, EG(kF ) = EL(kF ), should be at least approximately controlled

in all calculations to extract reliable conclusions, which is not simply assumed equal at any

density [1, 7, 8, 34]. When the equality of single particle energies is satisfied, thermodynamic

relations and dynamical calculations become compatible. The mean-filed approximations in

effective models of QHD satisfy the requirement accurately.

Although the relativistic Hartree approximations to the QHD maintain thermodynamic con-

sistency exactly, it is difficult to maintain self-consistency and thermodynamic consistency in

sophisticated approximations [42] (Hartree-Fock, Ring, etc.), since inclusion of certain interac-

tion processes by physical intuitions as Brueckner and others proposed [43–46] will not necessar-

ily promise theoretical consistency in the non-perturbative many-body and strongly interacting

systems. Thermodynamic consistency, or equivalently EG(kF ) = EL(kF ), is essential for many-

body calculations.

Based on the chiral (σ, π, ω) mean-field approximation [8], the current Chiral Dirac-Hartree-

Fock (CDHF) approximation is constructed with positive energy baryons in Fermi-sea parti-

cles, while negative energy particles in vacuum are neglected. Vacuum fluctuation corrections

are performed in the level of mean-field approximations [1, 8], and corrections produced by

counter-terms for ultra-violet divergences become finite and strictly density-dependent with

the constraint at nuclear matter saturation. The vacuum fluctuation corrections are discussed

in Hartree-Fock approximation, however, quantitative numerical values of the vacuum fluctua-

tion corrections have not been examined yet [32], and the difficulties of renormalization persists

in CDHF and other sophisticated approximations. However, it could be physically expected

that the constraints at nuclear matter saturation strictly restrict high energy contributions to

physical quantities, though the example is demonstrated only in linear and nonlinear Hartree

approximations.

We will show that Hartree-Fock approximation is a physically reasonable ground state ap-

proximation for nuclear matter than mean-field approzimations. This fact is shown explic-

itly by comparing Hartree and Fock contributions respectively in sec. 4. Hence, mean-field
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(Hartree) analyses performed by many researchers are not appropriate. Thermodynamic con-

sistency, equivalently EG(kF ) = EL(kF ), is accurately satisfied with the renormalized CDHF

calculations, and the theoretical relations among single particle energy, self-consistency and

retardation mechanism are discussed. In the course of analysis, the discrepancy between Feyn-

man diagram approach and the functional differentiation to determine self-energies is examined.

This approach may help construct thermodynamically consistent approximations for analyzing

non-perturbative calculations for nuclear matter.

The CDHF approximation and self-consistency, retardation corrections, discrepancy between

Feynman diagram and DFT approach are explained in sec. 3. The numerical results of HF ap-

proximation, different saturation properties of direct and exchange corrections, physical quan-

tities at saturation are discussed in sec. 4. Properties of symmetric nuclear matter and neutron

stars are discussed in sec. 5, and conclusions are in sec. 6.

2 The chiral mean-field Lagrangian, Lcsb, for CDHF
The notations and signs are introduced to comply with QHD models. The chiral (σ,π, ω)

mean-field approximation is defined by replacing meson quantum fields with classical fields:

σ̂ → ⟨σ⟩ = σ and ω̂µ = (ω̂0, ω̂) → (ω0,ω). The spatial part of the vector field ⟨ω⟩ should

vanish by the requirement of rotational invariance in the (mean-field) Hartree approximation,

while contributions of the vector component of ω-meson, ω, and pion field, π, are restored

on the level of HF approximation. It should be noted that we employed the chiral-invariant

potential,

V (σ, π, ωµ) =
λ

4

{
(σ2 + π2)(σ2 + π2 − aω2

µ)− a2(ωµω
µ)2

}
, (λ > 0) , (2.1)

in order to produce nuclear ground state by symmetry breaking mechanism. The new ground

state is defined by σ̂ → ⟨σ⟩ + ϕ and ⟨σ⟩ = −M/g, ⟨ω⟩ = 0 and ⟨π⟩ = 0 [8, 10, 13], and the

notation of scalar meson field is changed to ϕ (σ is used for index notations, such as mσ, gσ,...).

The chiral mean-field Lagrangian is generated after symmetry-breaking, resulting in:

Lcsb =
∑
n

ψ̄n

[
γµ(i∂µ − gωωµ)−

{
Mn − g(ϕ+ γ5τ · π)

}]
ψn

+
1

2
(∂µϕ∂

µϕ−m2
σϕ

2) +
m2

σ −m2
π

2

g

M

{
ϕ− g

4M
(ϕ2 + π2 − aω2

µ)
}
ϕ2

+
1

2
(∂µπ · ∂µπ −m2

ππ
2) +

m2
σ −m2

π

2

g

M

{
ϕ− g

4M
(ϕ2 + π2 − aω2

µ)
}
π2

− 1

4
FµνF

µν +
1

2
m2

ωω
2
µ − m2

σ −m2
π

2

g

M

{1
2
aϕ− g

4M
a2ω2

µ

}
ω2
µ ,

(2.2)

where a = 2m2
ω/m

2
π, and gσ = gπ is required from invariance under the chiral transformation

and denoted as g; the field strength Fµν is written as Fµν = ∂µων − ∂νωµ. The hadron masses

are fixed as M = 939, mω = 783.0 and mπ = 138.0 MeV. The model has three parameters to

produce the nuclear matter saturation property: binding energy, E/ρB −M = −15.75 MeV, at
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baryon density, ρB = 0.148 fm−3. In the effective chiral symmetry breaking model, they are

the mass of neutral scalar meson, mσ, and coupling constants g and gω.

However, the ratios of physical parameters, g2σ(M/mσ)
2, g2ω(M/mω)

2, are known to con-

tribute to physical quantities in QHD models, and these parameters respectively take al-

most constant values [1]. The current CDHF calculation is compatible with the ratios of

physical parameters and analyses in QHD, and the characteristic constants, g2(M/mσ)
2 and

g2ω(M/mω)
2, are constrained by the saturation condition, E/ρB − M = −15.75 MeV, at

ρB = 0.148 fm−3 because of self-consistency. The values of constants are, g2(M/mσ)
2 = 222

and g2ω(M/mω)
2 = 109, and they are fixed as mσ = 70 MeV, g = 1.110, gω = 8.712, resulting

in improved data, (see, Table 1). The mean-field lagrangian of Lcsb and induced mean-field

(Hartree) approximation are discussed in references [7, 8, 13–15].

The baryons (neutrons and protons) are described by the Dirac equation of motion and

Schwinger-Dyson equation is used to sum all orders of self-consistent Feynman diagrams to

the baryon Green’s function. The baryon propagator of the relativistic approximations is con-

structed analogously to the noninteracting propagator, which is essential for the quasiparticle

approach [47]. It is assumed that the baryon Green’s function has simple poles with unit

residues and at a finite baryon density the particles are filled up to the Fermi surface, |k| = kF .

The Green’s function is defined in the rest frame of nuclear matter in terms of the particle-

antiparticle propagator, GF (k), and the hole propagator inside the Fermi-sea, GD(k), as follows:

G(k) = GF (k) +GD(k) ,

GF (k) = (γµk∗µ +M∗(k))
1

k∗2µ −M∗(k)2 + iϵ
,

GD(k) = (γµk∗µ +M∗(k))
iπ

E∗(k)
δ(k0 − E(k))θ(kF − |k|) ,

(2.3)

where E(k) is the self-consistent single particle energy spectrum, and ϵ = 0+, a positive in-

finitesimal number. The self-consistent dynamical variables (all are functions of |k|, k0 and kF )

are defined as:

M∗(k) ≡M +Σs(k) , k∗(k) ≡ k(1 + Σv(k)) ,

k∗0 ≡ E∗(k) ≡ (k∗2(k) +M∗(k)2)1/2 ,

k∗µ ≡ kµ +Σµ(k) = (k0 +Σ0(k),k∗(k)) .

(2.4)

The single particle energy is given by the solution to the transcendental equation,

E(k) = [E∗(k)− Σ0(k)]k0=E(k)

= {k2[1 + Σv(|k|, E(k))]2 + [M +Σs(|k|, E(k))]2}1/2 − Σ0(|k|, E(k)) ,
(2.5)

and self-energies depend on E(k), |k| and kF . The Green’s functions with the dynamical vari-

ables, direct and exchange Feynman diagrams and the energy-momentum tensor defined by

lagrangian after symmetry breaking are used to obtain the ground-state energy density, E , and
the hydrodynamic pressure, Phy [7, 8, 10–13].
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The self-energies, Σs(k), Σ0(k), Σv(k) are constructed field-theoretically by including direct

and exchange terms using Schwinger-Dyson formalism, but negative energy state contributions

are excluded. The energy density and pressure are derived from the ground state expectation

value of the energy-momentum tensor. The dynamical variables, such as M∗(k), k∗(k) and

E(k) (or self-energies Σs(k), Σv(k) and Σ0(k)), are determined self-consistently in sec. 3.

3 The energy density in the chiral Dirac-Hartree-Fock approximation

The energy density in the chiral Dirac-Hartree-Fock (CDHF) approximation is expressed as:

EHF = EB + EH(ϕ, ω) + EEX(ϕ, ω, π) (3.1)

where EB(kF ), EH(ϕ, ω) and EEX(ϕ, ω, π) are the baryon, direct (Hartree) and exchange energy

densities, respectively.

The baryon energy density is given by the self-consistent single particle energy of nucleons:

EB(kF ) =
∑
i

niE(ki) =
∑

B=n,p

2

(2π)3

∫ kFB

d3kEB(k), (3.2)

where ni is the particle occupation number, and the baryon density is denoted as:

ρB =
∑
i

ni =
ζ

6π2
k3F , (3.3)

where ζ is the spin-isospin degeneracy factor, ζ = 2 (neutron matter), ζ = 4 (nuclear matter),

and kFB is a baryon Fermi-momentum (B = n, p).

The Hartree energy density, EH(ϕ, ω), is,

EH(ϕ, ω) =
1

2
m2

σϕ
2 − g

2M
(m2

σ −m2
π)

(
ϕ− 1

2

g

2M
ϕ2

)
ϕ2

− 1

2
m2

ωω
2
0 +

g

2M
(m2

σ −m2
π)a

(
ϕ+

1

2

g

2M
aω2

0 −
g

2M
ϕ2

)
ω2
0 ,

(3.4)

where the constant, a = 2m2
ω/m

2
π, is required in the new nuclear ground state due to symmetry-

breaking mechanism. One should note that meson fields of EH(ϕ, ω) are only density-dependent

by way of Fermi-momentum, kF , as ϕ(kF ) and ω0(kF ).
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The exchange energy, EEX(ϕ, ω, π), is:

EEX(ϕ, ω, π) =
1

2ζ

∑
i

∑
j

ninj
1

E∗(ki)E∗(qj)
×{

g2σD
0
σ(ki − qj)

[
1

2
−
{
Vσ(ki − qj) + [E(ki)− E(qj)]

2}
D0

σ(ki − qj)

] (
k∗µi q∗jµ +M∗(ki)M

∗(qj)
)

+ 2g2ωD
0
ω(ki − qj)

[
1

2
−
{
Vω(ki − qj) + [E(ki)− E(qj)]

2}
D0

ω(ki − qj)

] (
k∗µi q∗jµ − 2M∗(ki)M

∗(qj)
)

− (ζ − 1)g2πD
0
π(ki − qj)

[
1

2
−
{
Vπ(ki − qj) + [E(ki)− E(qj)]

2}
D0

π(ki − qj)

]
·

(
−k∗µi q∗jµ +M∗(ki)M

∗(qj)
)}

.

(3.5)

One should note that the meson propagators in Eq. (3.5) are self-consistently determined as,

D0
i (k) = (k20 − k2 −m∗2

i (k))−1, (i = σ, ω, π) . (3.6)

The coupling constants, gσ = gπ ≡ g, should be understood from chiral symmetry-breaking

mechanism. One should note that meson fields of EEX(ϕ, ω, π) are Fermi-momentum and mo-

mentum dependent as ϕ(kF ,k), ωµ(kF ,k) and π(kF ,k), and they are written as ϕ(k), ωµ(k)

and π(k) for simplicity.

The nonlinear interaction modifications, Vi(kF ,k) (denoted as Vi(k), i = σ, ω, π), to energy

transfer [E(ki)− E(qj)]
2
are given by:

Vσ(k) =
m2

σ −m∗2
σ (k)

2
− m2

σ −m2
π

2

g

M

{
ϕ(k)− 1

4

g

M
(ϕ2(k) + π2(k)− aω2

µ(k))
}

Vω(k) =
m2

ω −m∗2
ω (k)

2
− m2

σ −m2
π

2

ga

M

{ϕ(k)
2

− 1

4

g

M
aω2

µ(k)
}

Vπ(k) =
m2

π −m∗2
π (k)

2
− m2

σ −m2
π

2

g

M

{
ϕ(k)− 1

4

g

M
(ϕ2(k) + π2(k)− aω2

µ(k))
}
.

(3.7)

It is noticeable that nonlinear meson corrections in EH(ϕ, ω) and EEX(ϕ, ω, π) have a charac-

teristic form of coefficients:
m2

σ −m2
π

2

g

M
. (3.8)

The complex nonlinear corrections seem to be suppressed by g/M ≪ 1, but plus or minus sign

is determined by the mass difference, m2
σ −m2

π. When mσ > mπ, exchange contributions of

self-energies become large, and solutions cannot be obtained as mσ & 300. The similar problem

was pointed out in other calculations of pseudo-scalar pion model, resulting in the extension to

pseudo-vector pion model. The problem is known as sensitive cancellations of large pion self-

energies at low-energy densities [25–29]. The CDHF approximation produced by the current

effective pseudo-scalar pion model exhibits the similar problem when mσ > mπ, however, when

mσ < mπ, finite and improved results are obtained, which suggests that self-consistency might

be essential for sensitive cancellations.
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By performing the first variation of EHF with respect to ni, one can produce the equation for

single particle energy and self-energies as:

δEHF

δni
= E(ki) +

∑
l

[
δM∗(kl)

δni

δE
δM∗(kl)

+
δk∗(kl)

δni
· δE
δk∗(kl)

+
δΣ0(kl)

δni

δE
δΣ0(kl)

]
, (3.9)

and by requiring the terms in the functional differential form in the right-hand side equal to 0,

the self-consistent single particle energy, E(ki), is rigorously obtained, and coupled functional

integro-differential equations for self-energies are generated as [21,22,24]:

δM∗(kl)

δni

δE
δM∗(kl)

= 0,
δk∗(kl)

δni
· δE
δk∗(kl)

= 0,
δΣ0(kl)

δni

δE
δΣ0(kl)

= 0 . (3.10)

The equations (3.9) and (3.10) are the requirement of thermodynamic consistency. Therefore,

thermodynamic consistency reproduces the fundamental requirement of DFT in terms of self-

energies. It is possible to directly obtain exact or accurate solutions to the coupled functional

equations for self-energies from (3.10). One should note that the self-energy solutons can be

compared to those derived from Feynman diagram method. It can be shown explictly that

self-energies derived from thermodynamic consistency (3.10) and Feynman diagram method

are essentially different in evaluating overall energy interactions (retardation interactions) and

nonlinear interactions [21–24].

The effective masses of mesons are derived from equations of motions and self-consistent

conditions, (3.9) and (3.10), and they are given by:

m∗2
σ = m2

σ − m2
σ −m2

π

2

g

M
3ϕ(k) +

m2
σ −m2

π

2
(
g

M
)2
(
ϕ2(k) + π2(k)− a

2
ω2
µ(k)

)
,

m∗2
ω = m2

ω − m2
σ −m2

π

2

g

M
aϕ(k) +

m2
σ −m2

π

2
(
g

M
)2
[1
2
(ϕ2(k) + π2(k)) + aω2

µ(k)
]
a ,

m∗2
π = m2

π − m2
σ −m2

π

2

g

M
2ϕ(k) +

m2
σ −m2

π

2
(
g

M
)2
(
ϕ2(k) + π2(k)− 1

2
aω2

µ(k)
)
.

(3.11)

It should be stressed that effective masses of mesons and nucleons are required in eqs. (3.2)

∼ (3.6) explicitly because of self-consistency. The effective masses of mesons are density-

dependent, m∗
i (kF ) in the Hartree approximation, but they are density and momentum de-

pendent m∗
i (kF ,k) in HF approximation. Meson effective masses m∗

i (k), the effective mass of

nucleons M∗(k), single particle energy, E(k) and momentum k∗(k), are self-consistently deter-

mined. These physical quantities are fundamentally related to binding energies at saturation

of nuclear matter.

Let us denote the HF self-energies calculated from Feynman diagrams as ΣF (k), and self-

energies calculated directly from (3.10) as ΣL(k). It is explicitly discussed in [22–24] that

self-energies constructed from Feynman diagram method, ΣF (k), are approximate solutions

to (3.9) and (3.10). The self-energies are equivalent, ΣF (k) = ΣL(k) in mean-field (Hartree)

approximations and in the static limit of DHF approximation [21].

The static limit is defined as energy-transfers should vanish, E(k)−E(q) → 0, in all calcula-

tions of the HF calculation. The equality, ΣF (k) = ΣL(k), is proved by directly performing the
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Fig. 1 The Hartree-Fock self-energy drawn by propagators of baryons, GD(k), and
mesons, D0

i (k). Meson interaction lines, D0
i (k) (i = σ, π, ω), are given by effective masses

of mesons, self-consistently renormalized as (3.6) and (3.11).

functional derivative (3.10) and comparing the deduced ΣL(k) with ΣF (k) constructed from

Feynman diagrams, respectively. The fact indicated that the difference between ΣF (k) and

ΣL(k) originates from energy transfer and retardation interactions. The self-energy solutions,

ΣL(k), include retardation corrections accurately to maintain (3.9) and (3.10). The residual

density-dependent, retardation terms cause inconsistency, but the numerical violation is very

small since Phy = PT = PHV is controlled accurately in the self-consistent CDHF approxima-

tion. One should note that retardation corrections can not be correctly produced in ΣF (k) by

way of Feynman diagram constructions.

The functional derivatives leave residual density-dependent terms related to three-body in-

teractions, which should be connected to two-body Green’s function G(k1, k2). Hence, residual

terms could be produced in hierarchical structure connected to higher order Green’s func-

tions [48–50]. The higher order contributions are negligible as long as (3.9) and (3.10) are

satisfied, which are checked by calculating pressures: Phy = PT = PHV , and it may help

understand sensitive cancellations of residual corrections in self-energies.

Therefore, the conditions of thermodynamic consistency suggest that accurate, consistent

solutions be possible to construct by renormalizing 3-body and higher-order interactions. Ther-

modynamic consistency is a method to renormalize and decouple higher order corrections, but it

is different from the artificial decoupling of equations of motion in hierarchical, infinite BBGKY

chain problems [49,50].

We denote the accurate self-energies derived from functional equations (3.9) ∼ (3.10) as

admissible solutions to self-consistent approximations. They produce the effective mass of

nucleons:

M∗(ki) =M − g2σ
m2

σ

ρ′σ

−1

ζ

∑
l

nl
M∗(ql)

E∗(ql)

{
g2σD

0
σ(ki − ql)

[
1
2 − {Vσ(ki − ql) + (E(ki)− E(ql))

2}D0
σ(ki − ql)

]
− 4g2ωD

0
ω(ki − ql)

[
1
2 − {Vω(ki − ql) + (E(ki)− E(ql))

2}D0
ω(ki − ql)

]
− (ζ − 1)g2πD

0
π(ki − ql)

[
1
2 − {Vπ(ki − ql) + (E(ki)− E(ql))

2}D0
π(ki − ql)

]}
,

(3.12)
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where M∗(ki) −→M, (kF → 0) is used. The scalar density, ρ′σ, is defined as,

ρ′σ(kF ) =
g2σ
m∗2

σ

{∑
i

ni
M∗(ki)

E∗(ki)
− m2

σ −m2
π

4M
aω2

0

}
. (3.13)

The modified momentum, k∗, is,

k∗(ki) = ki +
1

ζ

ki

|ki|
·
∑
l

nl
q∗(ql)

E∗(ql)
·{

g2σD
0
σ(ki − ql)

[
1
2 − {Vσ(ki − ql) + (E(ki)− E(ql))

2}D0
σ(ki − ql)

]
+ 2g2ωD

0
ω(ki − ql)

[
1
2 − {Vω(ki − ql) + (E(ki)− E(ql))

2}D0
ω(ki − ql)

]
+ (ζ − 1)g2πD

0
π(ki − ql)

[
1
2 − {Vπ(ki − ql) + (E(ki)− E(ql))

2}D0
π(ki − ql)

]}
,

(3.14)

where k∗(ki) −→ ki (kF → 0) is used. The admissible solution, Σ0(k), is:

Σ0(ki) = − g2ω
m∗2

ω

ρB

+
1

ζ

∑
l

nl

{
g2σD

0
σ(ki − ql)

[
1
2 − {Vσ(ki − ql) + (E(ki)− E(ql))

2}D0
σ(ki − ql)

]
+ 2g2ωD

0
ω(ki − ql)

[
1
2 − {Vω(ki − ql) + (E(ki)− E(ql))

2}D0
ω(ki − ql)

]
+ (ζ − 1)g2πD

0
π(ki − ql)

[
1
2 − {Vπ(ki − ql) + (E(ki)− E(ql))

2}D0
π(ki − ql)

]}
.

(3.15)

The self-energies are then related to dynamical variables and classical fields as:

M∗
HF (k) ≡M +Σs

H(kF ) + Σs
F (k) =M − gσ(ϕ

D

HF (kF ) + ϕEX

HF (k)) ,

k∗
HF (k) ≡ k(1 + Σv

F (k)) = k(1− gω|ωF (k)|) ,
Σ0

HF (k) = Σ0
H(kF ) + Σ0

F (k) = −gω(ω0D
HF (kF ) + ω0EX

HF (k)) ,

k∗0 ≡ E∗
HF (k) ≡ (k∗2

HF (k) +M∗
HF (k)

2)1/2 ,

k∗µ ≡ kµ +Σµ
HF (k) = (k0 +Σ0

HF (k),k
∗
HF (k)) .

(3.16)

The relations between self-energies and sigma fields are explicitly written in (3.16) as the kF -

dependent direct part, Σs
H(kF ) = −gσϕD

HF (kF ), and density-momentum dependent exchange

part, Σs
F (k) = −gσϕEX

HF (k), and similarly, Σ0
H(kF ) = −gωω0D

HF (kF ) and Σ0
F (k) = −gωω0EX

HF (k)

should be understood. This is important to make sure that the direct part, ϕD
HF (kF ) and

ω0D
HF (kF ) should satisfy the mean-field equations of motion for ϕ and ω. The total fields, ϕHF (k)

and ω0
HF (k) are directly connected to M∗

HF (k) and Σ0
HF (k), respectively. When M∗(k), k∗(k)

and Σ0(k) are derived from (3.12) ∼ (3.15), one must check again if the new scalar and omega

fields, ϕD
HF (kF ) and ω0D

HF (kF ), are the solution to mean-field equations of motion for mesons.

The calculations converge reasonably well within kF = 2.0 fm−1, and the result will be applied

to maximum masses of neutron stars [7, 8] in sec. 5.
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One should note that the self-energies derived from Feynman diagrams, ΣF (k), do not agree

with the results: (3.12) ∼ (3.15), and hence, ΣF (k) is not the self-consistent solution to (3.9)

and (3.10). The energy-dependent terms in self-energies: −{Vi(k − q) + (E(k) − E(q))2},
(i = σ, ω, π), are not produced from Feynman diagram approach [20]. These energy-dependent

or retardation terms are produced generally from the energy-momentum tensor [1].

In the current chiral Dirac-Hartree-Fock (CDHF) approximation, thermodynamic consis-

tency is accurate, whose accuracy is examined by numerically checking Phy = PT = PHV , or

EG(kF ) = EL(kF ) (see the discussion in the sec. 1). Self-consistency is discussed in detail in

the references [22,24], and it is important to understand retardation and correlation effects for

applications to nuclear physics and nuclear astrophysics.

4 The numerical results of CDHF approximation

The self-energies (3.12) ∼ (3.15) are coupled nonlinear integral equations to determine

M∗(k),k∗(k) and E(k) (or Σ0(k)), and they are solved by iterations with starting values of

Hartree solutions [21, 22, 24]. The momentum-dependent nonlinear corrections in self-energies

and energy density, Vi(k − q), or alternatively, ϕ(k − q), ωµ(k − q), π(k − q), and meson

effective masses m∗
i (k − q) in meson propagators are momentum-dependent as ||k| − |q|| in

numerical calculations.

Numerical convergences are determined at a given density and momentum when the difference

of iterated values of single particle energies comes to |E(k) − E′(k)| ≤ 10−8. The numerical

solutions can be obtained up to a high density, kF ∼ 2.0 fm−1 (ρB ∼ 0.540 fm−3), with

reasonable iterations. In the applications to high density matter such as maximum masses of

neutron stars, it is typically known that main contributions come from energy density within

kF ∼ 2.0 fm−1 [1–9].

The CDHF binding energy, EHF/ρB −M , is shown in Fig. 2 and compared to the linear σ, ω

Hartree (LHA) and nonlinear σ, ω Hartree (NHA) approximations [9]. The smooth curve of

CDHF binding energy produces incompressibility K = 218 MeV and symmetric energy a4 =

21.3 MeV, at saturation density of nuclear matter. The HF approximation generates physically

reasonable values compared to linear and nonlinear mean-field (Hartree) approximations. The

properties of nuclear matter at saturation are listed in Table 1.

The energy densities of the direct (Hartree) and exchange (Fock) contributions are respec-

tively shown in Fig 3. The dotted line is the Hartree portion of CDHF given by EB + EH(ϕ, ω).

The binding energy and saturation density are E/ρB −M = −26.58 MeV, at kF = 1.43 fm−1

(ρB = 0.196 fm−3), indicated with an arrow. The direct interaction contributions saturate at a

higher density than the normal density, kF = 1.17 fm−1 (ρB = 0.108 fm−3). The solid line is the

exchange portion: EB+EEX . The binding energy and saturation density are E/ρB−M = −25.78

MeV, at kF = 1.17 fm−1 (ρB = 0.108 fm−3), lower than normal saturation density.

The HF analysis suggests that the self-consistent HF approximation is a physically reason-

able approximation to analyze ground state properties of nuclear matter than the mean-field
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Fig. 2 Binding energies of symmetric nuclear matter at T = 0. The solid line is the
chiral Dirac-Harteree-Fock (CDHF) approximation, which gives incompressibilityK = 218
MeV and symmetry energy a4 = 21.3 MeV. The dotted-line is LHA (linear σ, ω Hartree
approximation, K = 541 MeV and a4 = 19.3 MeV). The dot-dashed is NHA (nonlinear
σ, ω Hartree approximation, K = 333 MeV and a4 = 15.3 MeV) [9]. The saturation
condition is: ρB = 0.148 (1/fm3), E/ρB −M = −15.75 MeV.

approximation, because Fock-exchange interactions appear first at low densities as quantum

effects. The direct and exchange contributions altogether lead to binding energy of nuclear

matter at saturation density, kF = 1.30 fm−1 (ρB = 0.148 fm−3), E/ρB −M = −15.75 MeV

(compare CDHF in Fig 2 and Fig 3). The mean-field interactions contribute prominently at

high densities where classical pictures become dominant [1]. Whatever sophisticated nonlinear

Fig. 3 The direct and exchange contributions to binding energy. Note the different satu-
ration densities. The exchange interaction is more important at saturation than that of the
direct (Hartree) interaction, whereas the direct interaction is dominant at high densities.
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mean-field Lagrangian one can employ, the HF state is an appropriate ground state than that

of the mean-field approximation so as to examine properties of nuclear matter at and above

saturation density. The mean-field approximations should be extended to HF approximations

to examine nuclear matter and high density matter.

The effective masses of nucleon at Fermi surface, M∗
HF (kF ), are shown in Fig. 4. The CDHF

calculation yields M∗
HF (kF )/M = 0.76 at saturation density kF = 1.30 fm−1, whereas the linear

(σ, ω) mean-field approximation (LHA) leads to M∗(kF )/M = 0.54. The effective mass and

other physical properties of nuclear matter are closely related to each other [7–9].

The incompressibility, K, is defined by:

K = 9ρB

∂2E
∂ρ2B

. (4.1)

The symmetry energy, a4, is:

a4 =
1

2
ρB

[(∂2E
∂ρ23

)
ρB

]
ρ3=0

=
k2F

6E∗(kF )
+

1

2
ρB

[(∂2EF

∂ρ23

)
ρB

]
ρ3=0

, (4.2)

where the isovector density, ρ3, is given by ρ3 = ρp − ρn = (k3Fp
− k3Fn

)/3π2 using proton and

neutron densities [13–15,51], and the baryon density is ρB = ρp + ρn = 2k3F/3π
2 for symmetric

nuclear matter. The symmetry energy is generally divided into direct and exchange contri-

butions in thermodynamically consistent approximations, which is used in numerical evalua-

tions. The CDHF approximation yields incompressibility, K = 218 MeV and symmetry energy,

a4 = 21.3 MeV.

Fig. 4 The effective mass of nucleon. The solid line is the chiral Dirac-Harteree-
Fock (CDHF) approximation. The effective mass of nucleon on the Fermi surface is,
M∗(kF )/M = 0.76, at saturation density, kF = 1.3 fm−1 (ρB = 0.148 fm−3). The dotted-
line is LHA (linear σ, ω Hartree approximation.
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5 Properties of neutron stars

A neutron star is a high density object that is anticipated from the gravitational collapse

of a massive star during a supernova explosion. Neutron stars are considered to be supported

against further collapse with Pauli exclusion principle exerted by nuclear particles. The balance

between gravitational force and quantum mechanical force by nucleons should be attributed to

the existence of a high density neutron matter [13, 52–56]. Hence, properties of neutron stars

such as mass, radius, central energy, and density region of stability, are expected to include

information of nuclear dynamics and interactions.

The Einstein equation in the presence of matter is given by:

Rµν − 1

2
gµνR = −8πTµν , (5.1)

where Rµν is Ricci tensor and Tµν is symmetric two-index tensor indicating the presence of

matter supposed to be the energy-momentum tensor defined by models of nuclear physics. The

Tolman-Oppenheimer-Volkoff (TOV) equation is derived from the Einstein’s equation (5.1):

dp

dr
= −

G [p(r) + E(r)]
[
M(r) + 4πr3p(r)

]
r [r − 2GM(r)]

, (5.2)

where G is inserted for a mnemonic purpose, and the mass of a sphere with the radius of r is

defined by:

M(r) ≡ 4π

∫ r

0

dxx2E(x) . (5.3)

In a solid (or liquid) phase of nuclear matter, the edge of the star is sharply defined by dis-

appearance of pressure at the surface of a star, p(R) = 0. Now, it is possible to calculate the

maximum mass and radius of neutron stars with baryon density, pressure and energy density

(equation of state, EOS) discussed in the previous sections. Constraints at nuclear matter sat-

uration and thermodynamic consistency are essential to extract coherent results and examine

correlations for low and high density nuclear matter. One should prove and display thermo-

dynamic consistency before one should apply an approximation to nuclear and high density

matter.

Table 1. The CDHF Fermi-liquid properties of nuclear matter at saturation and neutron stars
with those of LHA (linear σ, ω mean-field) and CHA (chiral σ, ω mean-field) are listed. The
parameters in the current CDHF approximation are fixed as, g = 1.110, gω = 8.712, mσ = 70.0
MeV, mω = 783.0 MeV, mπ = 138.0 MeV.

M∗
N/M m∗

σ/mσ m∗
ω/mω m∗

π/mπ K (MeV) a4 (MeV) Mmax
star /M⊙ Rstar (km)

LHA 0.54 1 1 − 530 19.3 3.03 13.5
CHA 0.60 1.09 1.04 − 371 17.4 2.60 12.8
CDHF 0.76 1.32 1.05 1.02 218 21.3 2.21 11.6
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Fig. 5 The neutron star mass vs. central energy density. The solid line is the result of
chiral Dirac-Harteree-Fock (CDHF) approximation, resulting in the mass of neutron stars:
Mstar/M⊙ = 2.21 (see, table 1). The dotted-line and dashed-line are respectively from
LHA (linear σ, ω Hartree approximation) and CHA (chiral Hartree approximation).

The neutron star masses against central energy density are shown in Fig. 5. Masses and radii

of neutron stars and properties of nuclear matter at saturation derived from the CDHF are listed

in Table 1 and compared with those of linear (σ, ω) mean-field (LHA) [1] and chiral mean-field

(CHA) [7, 8, 13] approximations. The CDHF results improve those of mean-field calculations,

and extensions of self-consistent CDHF to more sophisticated approximations could contribute

to better understanding of nuclear interactions.

The recently measured neutron star masses are reported as, Mmax
star /M⊙ = 1.97 ± 0.04, or

Mmax
star /M⊙ = 2.01± 0.04 [57–60]. The empirical data are useful to scrutinize validity of nuclear

models and approximations, however, the current self-consistent analysis and the new empirical

data suggest that mean-field approximations to nuclear models are not sufficient to examine

properties of nuclear matter at saturation and neutron stars, because exchange, vertex and

retardation interactions may cause significant effects on EOS of nuclear matter. The current

effective nuclear model and approximations should be extended to include complex many-body

mechanism and retardation effects in order to extract physically consistent properties of hadron

interactions.

6 Concluding Remarks

There are several important conclusions to declare in the current paper. Firstly, we emphasize

that physically appropriate ground state of nuclear matter should be the Hartree-Fock ground

state. As demonstrated in sec. 4, important contributions come from exchange interactions

at saturation density. Many researches have investigated nuclear matter with complicated

nonlinear mean-field approximations equivalent to Hartree approximations. The proof can be
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attained when nonlinear interactions are correctly renormalized as effective masses of mesons

and baryons, effective coupling constants.

The significant difference between Hartree and Fock interactions comes from energy transfers

in Fock exchange terms, which appears as retardation effects on physical quantities. In the

relativistic approach, retardation effects will first emerge from the Fock exchange term, and

several attempts have been made to obtain a self-consistent set of equations with retardation

interactions. We have explicitly shown in the paper to derive a self-consistent set of equations

for self-energies from the requirement of thermodynamic consistency. Retardation effects have

generated a soft EOS, and HF calculations resulted in improved physical quantities at saturation

and high densities.

Secondly, a set of functional integro-differential equations for self-energies are derived from

conditions of self-consistency, and accurate solutions are compared with those constructed from

Feynman diagram method. However, self-consistent solutions are different from those ob-

tained by Feynman diagram construction. Specifically, retardation terms induced from energy-

momentum tensor and nonlinear interactions are noticeably different [21–24]. This is an open

question whether the difference comes from density-dependent Green’s function approach de-

fined by GD(k), or truncation of retardation interactions, etc. The investigation would be useful

for many-body theory.

Finally, we discussed the relation between the condition of thermodynamic consistency and

the density functional theory (DFT) in detail. Self-consistency would be considered as a method

to integrate higher order corrections into one particle Green’s function by way of renormaliza-

tion, thus making higher order corrections small. The accuracy of self-consistency can be

checked by the condition: Phy = PT = PHV , and in case of nuclear physics, the additional

condition, Phy = PT = PHV = 0, is required at nuclear matter saturation. It is different

from the artificial decoupling of equations of motion in hierarchical, infinite BBGKY chain

problems [49,50].

It is essential to include physically consistent vertex corrections into the current model,

because the vertex modifications could generate additional retardation effects on entire calcu-

lations. Extensions to Bruckner HF, Ring relativistic approximations with appropriate vertex

corrections which maintain the requirement of thermodynamic consistency should be investi-

gated. The problems of self-consistency discussed in the paper would arise model-independently,

and it is not confined to specific models in nuclear matter approximations. The theoretical anal-

ysis discussed in the paper would help understand the properties of ground-state of nuclear and

high density matter.
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