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Abstract

One-dimensional, inviscid, compressible, isothermal and isentropic flu-
ids under gravity are considered as usefull preambles relevant to the theory
of uni-axial meteorological phenomena [4, Sect.4, items 3 & 4]. In Sect.1,
the continuity equation, the Euler equations of these fluids, the equations
of their charcteristics as well as those of their energies, constants of the
motion, are given. Next, the continuy and Euler equations for isentropic
fluids are written in a matrix and compact forms, their diagonalized ver-
sions are shawn to be total derivatives of new constants of the motion,
identified as gravitational Riemann invariants, [1] .Then, and in Sect.1,
also, the mass densities at time t occuring in the above equations are ex-
pressed as product of their initial value times the inverse Jacobian of the
characteriistics of the fluids with respect to their initial values, an opera-
tion permitting to generate, central in this work, the first order non-linear
partial differential equations satisfied by these invariants and, also, those
of the other constants of the motion, the energies. In Sect.2, the Charpit
scheme, designed to solve non-linear first order PDE’s of n variables, in
general, [2, ch.4] , is presented. For systems of two independant variables,
the correspding ordinary differential equations are given in Sect.2.1.The
Charpit functions for the Riemannian cases and for the other cases are
given in Sect.2.2.Then,in Sect.3, the attention is focussed on the gravita-
tional Riemann invariants only, owing to their originality and also, to the
relative simplicity of the numerics implied. Their corresponding ODE’s
are given in Subsect.3.1 and, in Subsect.3.2, several examples are prop-
posed and some of their explcit solutions, algebraic and graphical are
reported .To conclude, due comparaison is made between these results
and solutions of equivalent PDE’s, given in [3, No.2.1.2.3, p.45] .

Highlights...
◦1D inviscid, cimpressible, isothermal or isentropic fluids under gravi-

tation.
◦Gravitational Riemann Invariants for isentropic systems
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1 Introduction.

Assuming, for simplicity, inelastic absorption of the fluid particles on the ground,
the coordinate of the characteristics is z(t) ≥ 0 and also <∞,w hereas the time
variable t is choosen to be ≥ 0. The governing PDE’s of these fluids are: the
continuity equation, with ρ(z, t) ≥ 0 for the mass density,and u(z, t) ⊂ R1for
the velocity field, i.e.

∂ρ/∂t+ ∂ (ρu) /∂z = 0 (1)

and the Euler equation

∂u/∂t+u∂u/∂z+g+
1

ρ
∂P (ρ)/∂z = 0, (2)

where g is the gravitational constant and P (ρ) is the pressure.
In the isothermal case we have (kB = Boltzmannconst., T = temperature,

m = mass of a fluid particle ) and with the suffix T standing for isothermal,

P := PT = kBTρ/m := cT (T )2ρ, (3)

cT (T ) being the temperature- dependant sound velocity and 1
ρ∂PT (ρ)/∂z =

cT (T )2 ∂ ln ρ/∂z.
In the isentropic case,with Cp and CV being respectively the specific heat

of perfect gases at constant pressure and volume, with the suffix S standing for
isentropic, with P := PS = Const.ρν/ν,where ν = CP /CV = (d/2 + 1)/d/2 =
3 for d = 1 and Const = k2,with k2ρ2 := cS(ρ)2, cS(ρ) being the density-
dependant sound velocity, we have

PS = k2ρ3/3 = c2S(ρ)ρ/3 (4)

and 1
ρ∂PS(ρ)/∂z = k2ρ∂ρ/∂z = k2ρ2∂ ln ρ/∂z = cS(ρ)2∂ ln ρ/∂z.

It is convenient to rewrite (2) for the two cases. We have, respectively,

∂u/∂t+u∂u/∂z+g + cT (T )2(∂ρ/∂z)/ρ = 0. (5)

and
∂u/∂t+u∂u/∂z+g + cS(ρ)2(∂ρ/∂z)/ρ = 0. (6)

From (5 & 6) , with u = dz/dt =:
·
z, and ∂u/∂t+u∂u/∂z = d2z/dt2 =:

··
z,

we obtain the equations of motion of the characteritics of our models,written
in parallel, namely (7)

··
z + g +

(
cT (T )2

cS(ρ)2

)
(∂ρ/∂z)/ρ = 0, (7)

and their constants of the motion, i.e.their energies, which read (8), with y
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being the initial value of z,

1

2

.
z
2

+ gz + cT (T )2 ln ρ(z) =
1

2
u(y)2 + gy + cT (T )2 ln ρ0(y), (8)

for the isothermal case and (9) for the isentopic one,

1

2

.
z
2

+ gz +
1

2
cS(ρ(z))2 =

1

2
u(y)2 + gy +

1

2
cS(ρ0(y))2. (9)

We proceed in showing that, in addition to the conservation of energies recalled
above, and in the isentropic case only, there are two other constants of the
motion, closely related to the Riemann Invariants established in 1858 [1] for
perfect, invsicid, compressible, and isentropic fluids in 1D (cf. [2] , sec ts. 6.8.&
6.9 for an extensive presentation). In order to generalize these Invariants for
g > 0, it is suitable to introduce the colomn vector V =:

(
ρ

u+gt

)
,the matrix AS =:(

u ρ
cS(ρ)2/ρ u

)
,and to rewrite (1) & (6) in the matrix and also compact forms

∂

∂t

(
ρ

u+ gt

)
+

(
u ρ

cS(ρ)2/ρ u

)
∂

dz

(
ρ

u+ gt

)
:=

∂

∂t
V + AS

∂

∂z
V = 0 (10)

The eigenvalues of the 2 by 2 matrix are, in setting ε = +/−1, λS = u+εcS(ρ)
and its eigenvectors are ϑS,ε :=

(
1

εcS/ρ

)
. The unique property of these eigen-

vectors is that they are constant vectors since cS/ρ = constant k. A similar
operation made with the isothermal case would have produced density depen-
dant eigenvectors ϑT,ε :=

(
1

εcT /ρ

)
. With the matrix MS: = ( ϑS,+1 ϑS,−1) ,we

can introduce the diagonalized version

V = MSW . (11)

It follows that,with ASMS = MSλS ,and since MS = constant matrix 6= 0,
we have that, ∂

∂tV + AS
∂
∂zV = MS(∂W/∂t + λS∂W/∂z) = 0 , or, explicitly,

∂W/∂t + λS∂W/∂z = eq(6) + (εcS/ρ)eq(1) = 0. (12)

In terms of indefinite integrals, the solutions are

W (z, t; ε) = u+ gt+ ε

∫ ρ(z)

dρ′cS(ρ′)/ρ′ = u+ gt+ εcS(ρ) (13)

In the sequel, the equations W (z, t; ε) = W (y, 0; ε) will be needed. In fact
W (y, 0; ε) are, strictly speaking, the invariants, as of now identified as gravi-
tational Riemann invariants. In terms of Lagrangian variables, their algebraic
forms are ,

W (y, 0; ε) = u(y) + εcS(ρ0(y) =
·
z + gt+ εcS(ρ(z, t) = W (z, t; ε) (14)

Notice, here, that the solutions of W (z, t; ε)) are also valid if gt is replaced

Quarterly Physics Review, Vol. 3, Issue 3, October 2017

                   Inviscid 1 D fluids under gravity

   Copyright 2017 KEI Journals. All Rights Reserved                    Page 3   



by any differentiable external velocity field ue(t),as in the case of friction-less
electric wires subject to time-dependant electric fields.

At this point we solve formally the continuity equation which expresses the
conservation of mass as ρ(z, t)dz = ρ(z(y, t), t)dz = ρ0(y)dy by the introduction
of the Jacobian ∂z(y,t)/∂y, in setting (15)

ρ(z, t) = ρ(z(y, t), t) = ρ0(y)(∂z(y,t)/∂y)
−1
, (15)

ρ0(y) being the, spatially dependant, initial density of the models. Notice
that the positivity of ρ(z, t) implies the positivity of the Jacobian ∂z(y,t)/∂y.
Using the fact that

·
z(y,t) := ∂z(y,t)/∂t, (16)

and, with the simplifying notation ∂z(y,t)/∂y :=zy as well as ∂z(y,t)/∂/t :=
zt,we can write (14),in function of the original variables and in terms of the
followong first order non-linear PDE’s, central in this work, namely (17)

zt + εcS(y)(z−1y − 1) + gt− u(y) = 0. (17)

Clearly,in both cases, gt could be replaced by ue(t).
Notice that, for completness and with the same conventions of notation,

the constants of the motion (8 & 9) can also be written as non-linear first order
PDE’s, quadratic in zt, namely (18)

1

2
z2t + cT (T )2 ln zy −

1

2
u(y)2 + g(z − y) = o, (18)

and (19)

1

2
z2t +

1

2
cS (y)2

(
z−2y − 1

)
− 1

2
u(y)2 + g(z − y) = o, (19)

We are ready to introduce the Charpit scheme for solving the nonlinear first
order PDE’s:(17 : the Riemannian type) and,in principle also :(18, 19).However,
as pointed out in the Introduction,the analysis and solutions of the Riemannian
cases, only, are going to be dealt with in details here,whereas the general
frameswork of discussion will be given for both types.The labeling of the vari-
ables will be (q0, q,p0, p,z) corresponding to (c0t := s, y,zc0t, zy, z), where c0
will be the temperature- dependant cT (T ) or intial coordinate dependant (via
the initial density) cS(y) := cS(ρ0(y)) reference velocities, as specified above.
The mapping of the above equations to those of the Charpit scheme , presented
below, will require that y which is here, a prescribed, initial condition, becomes
a variable, denoted q ⊂ R+ ,of space-like nature and the solution of the cor-
responding first order Charpit ODE’s will imply the provisional introduction
of an initial value for q, denoted r ⊂ R+. Ultimately, r will be eliminated as
a function of q, i.e. of y and of the parameter s of the characteristics, a pro-
cedure checked in comparing our solutions of the Rimannian case, given in
Subsect.3.2 with those of equivalent PDE’s given in [3, No.2.1.2.3, p.45]
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2 The Charpit scheme

The purpose of this scheme is to convert first order, nonlinear PDE ’s of, say,
2n independant variables to a set of 2n ODE’s [2, ch.4],a purpose similar to
but more general than that of Hamilton-Jacobi’s scheme in analytical mechan-
ics.The case of two independant variables is treated in details in the following
two subsections.

2.1 The Charpit Equations

For a system of two independant variables and following a standard notation
[2, ch.4], let F (x, y, p, q, u(x, y)) = 0 be the said PDE ,or Charpit function,
with p = ux q = uy and with the labeling (x, y, p, q, u(x, y)) corresponding to
(q0, q, p0, p, z(q0, q)),as used above.Let s be the parameter of the trajectories.
The Charpit equations then read:

dx/ds = ∂F/∂p := Fp (20)

dy/ds = Fq (21)

du/ds = pFp + qFq (22)

Two more equations, for p and q, are needed. In fact, one only, for q, is
needed, since that for p can be obtained from the Charpit function. Consider
first

dF/dx = Fx + Fppx + Fqqx + Fuux = 0 (23)

and

dF/dy = Fy + Fppy + Fqqy + Fuuy = 0 , (24)

and take into account the integrability hypothesis

py = ux,y = uy,x = qx . (25)

Then, since py = qx,we have

dF/dy = Fy + Fpqx + Fqqy + Fuuy = 0 , (26)

and, symmetricaly, with qx = py :

dF/dx = Fx + Fppx + Fqpy + Fuux = 0 . (27)

It follows that

dq/ds = qxFp, + qyFq = −(Fy + Fuuy) , (28)

and that
dp/ds = pxFp + pyFq = −(Fx + Fuux). (29)
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We have also, in a compact form:

ds =
dx

Fp
=
dy

Fq
=

du

uxFp + uyFq
=

dq

−(Fy + Fuuy)
=

dp

−(Fx + Fuux)
(30)

It is convenient to re-write, here, the Charpit equations in terms of our vari-
ables and call F := FI(q0, q, p0,p, ; γ, ε),independent of z, the Charpit functions
corresponding to (17) and F := FII(q, p0,p, z; γ), independent of q0, those cor-
responding to ( 18 & 19),We have in both cases, recalling that q0 = c0t = s
,

dq0
ds

= Fp0 (31)

dp0
ds

= −(Fq0 + Fzp0), (32)

dq

ds
= Fp, (33)

dp

ds
= −(Fq + Fzp), (34)

and
dz

ds
= p0Fp0 + pFp (35)

2.2 The Charpit functions for the present 1D fluids

With zc0t := p0, c0 being the modell- dependant reference velocity defined
in the last paragraph of sect.1. ,with zq := p; dividing (17) by cS(y), and
(18) , (19) by cT (T )2 and cS(y)2,respectively; setting γ := g/cT (T )2 or =
g/cS(y)2 , v(q) : u(q)/cT (T ) ,or u(q)/cS(y), the Charpit functions FI (corre-
sponding to the ,only isentropic, Riemannian cases) and FII (corresponding to
the other,isothemal or isentropic, constant energy cases represented in colomn) ,
become, while re-calling that FI depends upon ε but is independant of z,whereas
FII is independant of qoand ε but dependant upon z :

FI(q0, q, p0, p; γ, ε) = p0 + ε(p−1 − 1)− v(q) + γq0 = 0 (36)

and

FII(q, p0, p, z; γ) =
1

2
p20 +

(
ln p−1

1
2 (p−2 − 1)

)
− 1

2
v(q)2 + γ(z − q) = 0. (37)

3 The gravitational Riemann invariants

We proceed with an analysis of the FI models exclusivly in the following two
Subsections, one devoted to their EDO’s and to the equations for their densities,
and one to examples of isentropic solutions.
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3.1 EDO’s of the Charpit functions (36) and equations for
the densities

In writing the EDO’s of the isentropic cases associated to the PDE FI(q0, q,p0, p; γ, ε, )
(36), we have

dq0
ds

= 1, (38)

dp0
ds

= −γ, (39)

dq

ds
= −εp−2 (40)

dp

ds
= v(q)q (41)

In fact, from (36), we have also

p = (1 + ε(v(q)− p0 − γq0)−1. (42)

We have lastly

dz

ds
= p0 − εp−1. (43)

Observe,in passing, that the r.h.s of (43) assumes also the form p0 + pdqds .
The solutions of p0(r, s) and q0(s) are, with p0(r, 0) = zc0t(0) = v(r) , for

the two cases, and q0(s) = s,

po(r, s) = v(r)− γs. (44)

Thus p0(r, s) + γq0(s) = v(r) and

p(q, r) = (1 + ε(v(q)− v(r))−1 (45)

We have next, from (40 & 42),

−εs =

∫ q

r

dq′(p(q′, r)2 =

∫ q

r

dq′(1 + ε(v(q′ − v(r))−2 (46)

and, following (43)

z(q, r, s) =

∫ s

0

ds′(p0(r, s′)−ε(q(s′), r)−p1) = r+v(r)s− 1

2
γs2+ε

∫ q

r

dq′p(q′), r)

(47)
where, in the last equation, we have utilized the fact that,with (eq. 40) :

−ds′ = εp(q′, r)2dq′.
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We proceed with the equations for the densities. Following (15) and the
convention of notation made at the end of Sect.1,we have

ρ(q.s) = ρ0(q)
(
zq|s
)−1

. (48)

It is convenient to use the following formulation:

zq(q, r(q, s)) := zq|s = ∂z/∂q|r + ∂z/∂r|q∂r/∂qq|s := zq|r + zr|qrq|s (49)

and since ds = sqdq + srdr = 0 we have

rq|s = − (sq/sr)
s

(50)

and thus
zq|s = zq|r − zr|q (sq/sr)s (51)

The ground is prepared for presenting exemples of solutions of our gravita-
tional (isentropic) Riemann invariants.

3.2 Examples

Depending upon the initial conditions for the velocty fields and densities of
the FI models, the following examples are proposed for investigation: (FI , a) :
ρ0(r) = ρ0 , v(r) = r/c0τ = λr, κ(r) = 1 ; (FI , b) : ρ0(r) = ρ0, v(r)= (u∞/c0) tanh(µr),
u∞/c0:=v∞, µv∞ = λ, κ(r) = 1 and (FI , c) : ρ0(r) = ρ0(Ch(µr))−2 = ρ0(1 −
tanh(µr)2, v(r)=v∞ tanh(µr) :=v∞θ(r), i.e κ(r) := 1− θ(r)2. .Notice that the
cases (FIa) and (FIc) are said to be correlated in the sense that their initial
densities ρ(r) are v ∂v(r)/∂r.

The general procedure is i) :to solve p0(r, s); ii) : to solve q0(r, s) ; iii) to
use the Chapit functions FI to express p in function of q and r,in order to
solve the parametric equation s= s(q, r),and iv) : to solve the equation for
z(r, q, s).The next operations which, in general, require numerical analysis, are
to invert s(q, r) → r(q, s), since q and s are pescribed, to feed the result in
z(q, r(q, s), s) := z(q, s) and in ρ(q, s). Lastly,the independant variables q with
0 ≤ q < ∞ and s in ρ(q, s) and in z(q, s) are re-labeled as q → y,and , s→ c0t,
thus generating the sougbt solutions of the original PDE’ (17).

Recall that, here,we have, FI(q0, q, p0, p; γ, ε, ) = p0 + ε
(
p−1 − 1

)
− v(q) +

γq0 = 0, γ = g/c20. Then,from (38 & 39), dq0/ds = 1; dp0/ds = −γ; and dp/ds =
v(q)q, (41); dq/ds = −εp−2, (40) and dz/ds = p0 − εp−1 = p0 + pdq/ds, (43).

-Example FI , S, a) : ρ0(q) = ρ0, k(q) = 1, v(q) = λq.We have again p0 =
v(r)− γs and q0 = s.Next, with p0 + γq0 = v(r) and (42) for p,we get

p−1 = 1 + ε(v(q)− v(r)) (52)

and,from (40)
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−s = ε

∫ q

r

dq′p(q′.r)2 = (53)

ε

∫ q

r

dq′(1 + ε(v(q′)− v(r))−2 = ε

∫ q

r

dq′(1 + ε(λq′ − λr))−2 (54)

i.e.,

−s =
1

λ
(

−1

1 + ελ(q − r)
+ 1). (55)

This relation is easily invertible to yield

r(q, s) = q +
εs

1 + λs
. (56)

We have next

z(q, r, s) = r + λrs− 1

2
γs2 − ε

∫ s

0

ds′p−1 = (57)

r + λrs− 1

2
γs2 +

∫ q

r

dq′p(q′, r) (58)

i.e.,

z(q, r, s) = r(1 + λs)− 1

2
γs2 + ελ−1 ln | 1 + λε(q − r) | . (59)

Inserting (56) for r(q, s) gives

z(q, r(q, s), s) = z(q, s) = (1+λs)

(
q +

εs

1 + λs

)
−1

2
γs2−ελ−1 ln | 1+λs | . (60)

Recovering the original notations q → y, s → cot and remembering that
λs = t/τ,gives

z(y, t) = (1 + t/τ)(y +
εc0t

1 + t/τ
)− 1

2
gt2 − εc0τ ln | 1 + t/τ |= (61)

(1 + t/τ) (y + εc0τ)− εc0τ −
1

2
gt2 − εc0τ ln | 1 + t/τ | (62)

It remains to check that (62) coincides with a solution to be found in [3],
the book by Polyanin and Zaitzev. Indeed,this is achieved in three steps : i)
separate the gravitational factor gt from (17) in setting z = ς − 1

2gt
2, ii)

rewrite the EDP satisfied by ς, namely (17) without the term gt and mullti-
ply it by ςy,,thus producing the PDE: ςyςt − (εc0 + y/τ)ςy + εc0 = 0, iso-
morphic to [3.No.2.1, 2, 3.p.45] , iii) identify the correspondance between the
notations of the general solution of [3] and that particular of (62),namely:
(w, x, y, a, b, c, s, C1, C2)→ (−ς, y, t, 1/τ, εc0τ, 0, εc0, 1, εc0).
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Figure 1: Characteristics (62) and density (63).

It remains to give the solution for the density.We have

ρ(q, s) = ρ0z
−1
q → ρ(y, t) = ρ0 (1 + t/τ), (63)

a solution again valid in the time domain bounded by the requirement that
z(y, t) ≥ 0.

On Fig.1, first publishd in [5] , four examples of characteristcs (62) are
presented and one,(63),for the density, the latter, plotted in units of ρ0 ,with 1
as initial value. If s = t/τ, if z and y are plotted in units of cS(ρ0)τ, while g,
in units of cs(ρ0)/τ) , choosen to be = 5 ; then, the four characteristics shawn
correspond to the initial values : (ε, y(cS(ρ0)τ)−1) := (−1, 1; 1, 1;−1, 2; 1, 2), and
are presented from bottom to top, in the relevant first quadrant of the variables.

Example FI , S, b) : ρ0(q) = ρ0, κ(q) = 1, v(r) = v∞ tanh (µr) .Here, we
have also p0 = v(r) − γs and q0 = 1. Next, with (49dawn) and k(q) = 1,
p−1 = 1 + εv∞(tanh (µq)− tanh (µr)),we have

z(q, r, s) = r + v(r)s− 1

2
γs2 − ε

∫ s

0

ds′p(q(s′, r)−1. (64)

0r,with v(q) = v∞ tanh (µq) ,

z(q, r, s) = r + v(r)s− 1

2
γs2

∫ q

r

dq′(1 + εv∞(tanh (µq′)− tanh (µr))−1. (65)
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Next, and with dq/ds = −εp−2,we get

−s(q, r) = ε

∫ q

r

dq′p (q′, r)
2

= ε

∫ q

r

dq′(1+εv∞(tanh (µq′)− tanh (µr))−2, (66)

Setting as before θ = tanh(µq′), θ1 = tanhµq, θ0 = tanh(µr) , dp/ds =
−εk(q)(p−1 − 1) + v(q), (46dawn) and

dq′ = µ−1
(
1− θ2

)−1
dθ, the above equations become

z(q, r, s) = r + v(r)s− 1

2
γs2µ−1

∫ θ1

θ0

dθ
(
1− θ2

)−1
(1 + εv∞(θ − θ0)−1 (67)

and

−µs(q, r) = ε

∫ θ1

θ0

dθ
(
1− θ2

)−1
(1 + εv∞(θ − θ0)−2, (68)

both results being integrable, but remaining implicit functions of θ0 and θ1.
Exemple FI , S, c) ρ0(q) = ρ0k(q) = ρ0 cosh(µq)−2 = ρ0(1−(tanhµq)

2
), v(q) =

v∞ tanh(µq) = v∞θ(µq), k(q) = 1 − θ(q)2.We have once more = v(r) − γs =
v∞ tanh(µr)− γs, q0 = s,and next

p(q, r) = (1 + εv∞(tanh(µq)− tanh(µr))−1, (69)

−s = ε

∫ q

r

dq′p(q′, r)2 (70)

= ε

∫ q

r

dq′(1 + εv∞(tanh(µq′)− tanh(µr))−2, (71)

z(q, r, s) = r + v(r)s− 1

2
γs2 −

∫ q

r

dq′p(q′) = (72)

q + v(r)s)− 1

2
γs2 −

∫ q

r

dq′(1 + εv∞(tanh(µq′)− tanh(µr))−1, (73)

and, as in FI , S, b),except for the initial density,

ρ(q, s) = ρ0(cosh(µq)−2)p(q, r(q, s), s)−1. (74)

Notice here again, that, with θ = tanhµq′, dθ = µ(1 − tanh(µq′)2)dq′,we
have

−s = µ−1 ε

∫ θ1

θ0

dθ(1− θ2 + εv∞(θ − θ(µr))−2 (75)

and

z = r + v(r)s− 1

2
γs2 −

∫ θ1

θ0

dθ(1− θ2 + εv∞(θ − θ(µr))−1. (76)

Notice also that,again,both integrals can be peformed explicitely and if we
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define

L(ξ) :=

∫ θ1

θ0

dθ(ξ − θ2 + εv∞(θ − θ(µr))−1, (77)

then,
z = q + v(r)s− L(1), (78)

and

µs =
dL(ξ)

dξ
| ξ = 1. (79)

In summary and for all the Riemann-isentropic cases, we hve : p = 1/(1 +
v(q)−v(r)),−s = ε

∫ q
r
dq′k(q′)−1p(q′, r)2 ,z(q, r, s) = r+v(r)s− 1

2γs
2+ +

∫ q
r
dq′p(q′, r).It

follows that, zq|r = p ,zr|q = 1 + v(r)rs − 1 +
∫ q
r
dq′p(q′, r)r = +v(r)rs +

v(r)r
∫ q
r
dq′p(q′, r)2 = 0.Thus, zq|s = p and,with R.S. standing fo Riemann −

isentropic ρ(q, s, γ;R,S) = ρ0k(q)p(r(q, s), s)−1, It is interesting to notice that
the proportionality ρ ∼ p−1applies to all gravitational Riemannian cases.This
is a noteworthy conclusion of the present work.
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