Article Test

Home  >  Medical Research Archives  >  Issue 149  > Prediction of Ovarian Cancer with Deep Machine Learning and Alternative Splicing
Published in the Medical Research Archives
Nov 2023 Issue

Prediction of Ovarian Cancer with Deep Machine Learning and Alternative Splicing

Published on Nov 29, 2023

DOI 

Abstract

 

Objective: Early detection of ovarian cancer could lead to improved survival rates, however no method has reliably been able to predict ovarian cancer. The aim of this study is to determine if processing alternative splicing data from high grade serous ovarian cancer patients using machine learning analytics will discriminate high grade serous ovarian cancer from normal fallopian tube samples. The ultimate goal would be to have a model that can predict high grade serous ovarian cancer with a blood test.

Methods: This is a case-control study of patients with confirmed high grade serous ovarian cancer and those undergoing salpingectomy for benign indications. RNA-sequencing was performed on all samples. RNA-sequence data was then put into Deep-learning augmented RNA-seq analysis of transcript splicing software suite. Deep-learning augmented RNA-seq analysis of transcript splicing created a model of differential alternative splicing aimed to discriminate between high grade serous ovarian cancer and normal fallopian tube. DEXSeq analysis was used to determine exon-based expression. Initial results with both analytics were then modelled with multivariate lasso regression to create prediction models (performance determined by area under the curve and 95% CI). Models created were the validated using The Cancer Genome Atlas data sets.

Results: One hundred and twelve high grade serous ovarian cancer and 12 benign samples were successfully sequenced. Deep-learning augmented RNA-sequencing analysis of transcript splicing identified 998 unique differentially expressed exons between high grade serous ovarian cancer and controls. Multivariate lasso regression analysis identified several exons that predicted high grade serous ovarian cancer with high performance. Specifically, ENSG00000182512:E001 from gene GLRX5 was highly predictive of high grade serous ovarian cancer with an area under the curve of 100%.

Conclusions: Application of machine learning analytics to exon differential expression, most likely due to alternative splicing, predicted high grade serous ovarian cancer with high performance. These results were validated in an independent dataset of cases and controls. Differential exon expression from cell-free RNA potentially could be used for early diagnosis of high grade serous ovarian cancer.

Author info

Katharine Linder, Rachel Watson, Keely Ulmer, David Bender, Michael Goodheart, Eric Devor, Jesus Gonzalez Bosquet

Have an article to submit?

Submission Guidelines

Submit a manuscript

Become a member

Call for papers

Have a manuscript to publish in the society's journal?