Dietary Treatments to Reduce Insulin Resistance and Inflammation in Type-2 Diabetic Patients

Main Article Content

Maria Luz Fernandez, PhD Ana Gabriela Murillo, PhD

Abstract

Type 2 diabetes (T2D) has increased dramatically in the last 20 years afflicting more than 425 million people all over the world with 34 million located in the US, emphasizing the need for strategic therapies including dietary prescriptions or other lifestyle changes to reduce these numbers. In addition to abnormally high plasma glucose levels, high concentrations of glycosylated hemoglobin and insulin resistance, T2D is also characterized by dyslipidemias, oxidative stress, and low-grade systemic inflammation. Insulin resistance and inflammation in T2D can lead to cardiac problems, non-alcoholic fatty liver disease and kidney failure. T2D can be controlled by modifying current unhealthy practices by focusing on wholesome diets, exercise regimes and maintenance of a healthy body weight. In this review, we aim to demonstrate how specific dietary prescriptions including carbohydrate restriction, the Mediterranean diet, plant-based diets and the dietary approaches to treat hypertension (DASH) can improve not just the inflammatory response and reduce the biomarkers of inflammation but also have additional benefits on insulin resistance, weight loss, plasma lipids and blood pressure. In addition, the mechanistic evaluation of specific nutrients including antioxidants (polyphenols and carotenoids), certain fatty acids and vitamins and their exclusive role in decreasing inflammation will be discussed.

Keywords: type 2 diabetes, inflammation, insulin resistance, dyslipidemia, dietary treatments, antioxidants

Article Details

How to Cite
FERNANDEZ, Maria Luz; MURILLO, Ana Gabriela. Dietary Treatments to Reduce Insulin Resistance and Inflammation in Type-2 Diabetic Patients. Medical Research Archives, [S.l.], v. 10, n. 4, apr. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2768>. Date accessed: 05 oct. 2024. doi: https://doi.org/10.18103/mra.v10i4.2768.
Section
Research Articles

References

. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH. et al. IDF Diabetes Atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50.
. Maritim AC, Sanders RA, Watkins, III JB. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol. 2003;17:24–38
. Fowler MJ. Microvascular and macrovascular complications of diabetes. Clin Diabetes 2008;26:77–82.
. NIH. National Institute of Diabetes and Digestive and Kidney Diseases. https://www.niddk.nih.gov/health-information/diabetes/overview/what-is-diabetes/type-1-diabetes. Accessed February 2022
. Mayo Clinic. https://www.mayoclinic.org/diseases-conditions/type-2-diabetes/diagnosis-treatment/drc-20351199. Accessed February 2022
6. Berthoud H.-R., Klein S. Advances in Obesity: Causes, Consequences, and Therapy. Gastroentology. 2017;152:1635–1637.
. Wang CCL, Hess CN, Hiatt WR, Goldfine AB. Atherosclerotic cardiovascular disease and heart failure in type 2 diabetes – mechanisms, management, and clinical considerations. Circulation. 2016 Jun 14; 133(24): 2459–2502.
. Gianturco SH, Bradley WA. Pathophysiology of triglyceride-rich lipoproteins in atherothrombosis: Cellular aspects. Clin Cardiol. 1999; 22(Suppl 2): II-7–II-14.
. Aguilar D, Fernandez ML Hypercholesterolemia induces adipose dysfunction in obesity and non-obesity conditions. Adv Nutr 2014; 5:497-502.
. Gao S. Zhao D, Qi Y, Wang W, Wang M, Sun Y, et al, Circulating oxidized low-density lipoprotein levels independently predict 10-year progression of subclinical carotid atherosclerosis: a community-based cohort study. Atheroscler Thromb. 2018; 25(10): 1032–1043.
. Ben-Aicha S, Badimon L, Vilahur g. Advances in HDL: Much more than lipid transporters Int J Mol Sci. 2020; 21(3): 732
. Boniha, I, Zimetti F, Zanotti I, Papotti B, Sposito AC. Dysfunctional high-density lipoproteins in type 2 diabetes mellitus: molecular mechanisms and therapeutic implications. J. Clin Med. 2021 Jun; 10(11): 2233.
. Tanase DM, Gosav EM, Costea CF, Ciocoiu M, Lacatusu CM, Maranduca MA et al. The intricate relationship between type 2 diabetes mellitus (T2DM), insulin resistance (IR), and nonalcoholic fatty liver disease (NAFLD). J Diabetes Res. 2020; 2020: 3920196.
. Lytvyn Y, Bjornstad P, van Raalte DH, Heerspink H, Cherney DZ. The new biology of diabetic kidney disease—mechanisms and therapeutic implications. Endocr Rev. 2020 Apr; 41(2): 202–231.
. Atchison E.A., Gridley G., Carreon J.D., Leitzmann M.F., McGlynn A.K. Risk of cancer in a large cohort of U.S. veterans with diabetes. Int. J. Cancer. 2011;128:635–643..
. Seshasai S.R.K., Kaptoge S., Kaptoge S., Thompson A., Angelantonio E.D., Gao P. et al.. Emerging risk factors collaboration. diabetes mellitus, fasting glucose, and risk of cause-specific death. N. Engl. J. Med. 2011;364:829–841
. Calder P.C., Bosco N., Bourdet-Sicard R., Capuron L., Delzenne N., Dore J, et al. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res. Rev. 2017;40:95–119.
. Andersen CJ, Fernandez ML. Dietary strategies to reduce metabolic syndrome. Rev Endocrine Met Dis 2013: 14:241-254.
. Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. Diet, Lifestyle, and the Risk of Type 2 Diabetes Mellitus in Women. N. Engl. J. Med 2001;345:790–797
. Ma J, Stevens JE, Cukier K, Maddox AF, Wishart JM, Jones KL, et al. Effects of a Protein Preload on Gastric Emptying, Glycemia, and Gut Hormones after a Carbohydrate Meal in Diet-Controlled Type 2 Diabetes. Diabetes Care. 2009;32:1600–1602.
. Hu FB. Globalization of Diabetes: The Role of Diet, Lifestyle, and Genes. Diabetes Care. 2011;34:1249–1257. 2
. Volek JS, Phinney SD, Krauss RM, Johnson RJ, Saslow lR, Gower B et al.. Alternative dietary patterns for Americans: Low Carbohydrate diets. Nutrients. 2021; 13(10): 3299.
Kelly CT, Mansoor J, Dohm GL, Chapman WH, Pender JR. Pories WJ. Hyperinsulinemic syndrome: The metabolic syndrome is broader than you think. Surgery. 2014;156:405–411.
. Volek J.S., Fernandez M.L., Feinman R.D., Phinney S.D. Dietary carbohydrate restriction induces a unique metabolic state positively affecting atherogenic dyslipidemia, fatty acid partitioning, and metabolic syndrome. Prog. Lipid Res. 2008;47:307–318
. McKenzie Al, Athinarayanan SJ, McCue JJ, Adams RN, Keyes M, McCarter JP et al. Type-2 diabetes prevention focused on normalization of glycemia: A two-year pilot study. Nutrients. 2021 Mar; 13(3): 749.
. Boden G, Sargrad K, Homko C, Mozzoli M, Stein TP. Effect of a low-carbohydrate diet on appetite, blood glucose levels and insulin resistance in obese patients with type 2 diabetics. Am Intern Med. 2005;142:403–11.
. Ludwig DS. The ketogenic diet: evidence for optimism but high-quality research needed. J Nutr. 2019; 150:1354–9. 10
. Evert AB, Dennison M, Gardner CD, Garvey WT, Lau KHK, MacLeod J, et al. Nutrition therapy for adults with diabetes or prediabetes: a consensus report. Diabetes Care. 2019; 42:731–54
. Unwin DJ, Tobin SD, Murray SW, Delon C, Brady AJ. Substantial and sustained improvements in blood pressure, weight, and lipid profiles from a carbohydrate restricted diet: an observational study of insulin resistant patients in primary care. Int J Environ Res Public Health. 2019; 16:2680
. Browning JD, Baker JA, Rogers T, Davis J, Satapati S, Burgess SC. Short-term weight loss and hepatic triglyceride reduction: evidence of a metabolic advantage with dietary carbohydrate restriction. Am J Clin Nutr. 2011;93:1048–1052.
. Tay J, Luscombe-Marsh ND, Thompson CH, Noakes M, Buckley JD, Wittert GA, et al. A very low-carbohydrate, low saturated fat diet for type 2 diabetes management: a randomized trial. Diabetes Care 2014;37:2909–18.
. Guldbrand H, Dizdar B, Bunjaku B, Lindstrom T, Bachrach-Lindstrom M, Fredrikson M, et al. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologia 2012;55:2118–27.
. Daly ME, Paisey R, Paisey R, Millward BA, Eccles C,Williams K, et al. Short-term effects of severe dietary carbohydraterestriction advice in Type 2 diabetes–a randomized controlled trial. Diabetic Med: J Br Diabetic Assoc 2006;23:15–20.
. Saslow LR, Kim S, Daubenmier JJ, Moskowitz JT, Phinney SD, Goldman V et al. A Randomized Pilot Trial of a Moderate Carbohydrate Diet Compared to a Very Low Carbohydrate Diet in Overweight or Obese Individuals with Type 2 Diabetes Mellitus or Prediabetes. PLoS ONE 2014;9:e91027.
. Westman EC, Yancy Jr WS, Mavropoulos JC, Marquart M, McDuffie JR. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr Metabol 2008;5:36.
. Yamada Y, Uchida J, Izumi H, Tsukamoto Y, Inoue G Watanabe Y et al. A Non-calorie-restricted Low-carbohydrate Diet is Effective as an Alternative Therapy for Patients with Type 2 Diabetes. Intern Med 2014: 53: 13-19,
. American Diabetes Association. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes—2020. Diabetes Care. 2020;43:S48–S655
. Milenkovic T, Bozhinovska N, Macut D, Bjekic-Macut J, Rahelic D, Asimi ZV, Burekovic A, Mediterranean Diet and Type 2 Diabetes Mellitus: A Perpetual Inspiration for the Scientific World. A Review. Nutrients. 2021 Apr; 13(4): 1307. .
. Koloverou E., Esposito K., Giugliano D., Panagiotakos D. The effect of Mediterranean diet on the development of type 2 diabetes mellitus: A meta-analysis of 10 prospective studies and 136,846 participants. Metab. Clin. Exp. 2014;63:903–911.
. Milenkovic T, Bozhinovska N, Macut D, Bjekic-Macut J, Rahelic D, Velija.Z et al. Mediterranean Diet and Type 2 Diabetes Mellitus: A Perpetual Inspiration for the Scientific World. A Review. Nutrients. 2021;13(4): 1307.
. Torres-Peña JD, Garcia-Rios A, Delgado-Casado N, Gomez-Luna P, Alcalá-Díaz JF, Yubero-Serrano EM, et al.. Mediterranean diet improves endothelial function in patients with diabetes and prediabetes: A report from the CORDIOPREV study. Atherosclerosis. 2018;269:50–56..
. Jones JL, Ackermann D, Barona J, Calle MC, Andersen C, Kim JE, et al. A Mediterranean low-glycemic-load diet alone or in combination with a medical food improves insulin sensitivity and reduces inflammation in women with metabolic syndrome. Brit. J. Medicine Med Res.2011; 1:356-370.
. Ceriello A, Esposito K, La-Sala L, Pujadas G, De Nigris V, Testa R. The protective effect of the Mediterranean diet on endothelial resistance to GLP-1 in type 2 diabetes: A preliminary report. Cardiovasc. Diabetol. 2014, 13, 140.
. Maiorino MI, Bellastella G, Petrizzo M, Gicchino, M, Caputo M, Giugliano D, Esposito K. Effect of a Mediterranean diet on endothelial progenitor cells and carotid intima-media thickness in type 2 diabetes: Follow-up of a randomized trial. Eur. J. Prev. Cardiol. 2016, 24, 399–408.
. Kopp, W. How western diet and lifestyle drive the pandemic of obesity and civilization diseases. Diabe, Met Synd Obes: Targets and Therapy 2019;12, 2221–2236.
. Ley SH, Hamdy O, Mohan,V, B,F. Prevention and Mangement of type 2 Diabetes- Dietary compnents and Nut Strategies. Lancet 2016: 383(9933), 1999–2007.
. Kim H, Caulfield LE, Garcia-Larsen V, Steffen LM. Coresh J, Rebholz CM. Plant-Based Diets Are Associated With a Lower Risk of Incident Cardiovascular Disease, Cardiovascular Disease Mortality, and All-Cause Mortality in a General Population of Middle-Aged Adults. J. Am Heart Ass. 2019:8(16).
. McMacken M, Shah S. A plant-based diet for the prevention and treatment of type 2 diabetes. J. Geriatr.Cardiol.. 2017; 14(5): 342–354.
. Medawar E, Huhn S, Villringer A, Witte A. The effects of plant-based diets on the body and the brain: a systematic review. Trans Psych. 2019; 9(1).
. Sakkas H, Bozidis P, Touzios C, Kolios D, Athanasiou G, Athanasopoulou E et al. Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicina (Lithuania), 2020;56(2): 1–15.
. Tonstad S, Stewart K, Oda K, Batech M, Herring R.Fraser G. Vegetarian diets and incidence of diabetes in the Adventist Health Study-2. Nutr. Met Cardiovas Dis 2016;23: 1.
. Kahleova H, Tura A, Hill M, Holubkov R, Barnard ND. A plant-based dietary intervention improves beta-cell function and insulin resistance in overweight adults: A 16-week randomized clinical trial. Nutrients. 2018;10(2)
. Malinska H, Klementová M, Kudlackova M, Veleba J, Hoskova E, Oliyarnyk O. et al, A plant-based meal reduces postprandial oxidative and dicarbonyl stress in men with diabetes or obesity compared with an energy- and macronutrient-matched conventional meal in a randomized crossover study. Nutr Metab 2021;18(1): 1–12
. Barnard ND, Cohen J, Jenkins DJA, Turner-McGrievy G, Gloede L, Jaster B, et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care. 2006;29(8): 1777–1783.
. Satija A, Bhupathiraju SN, Rimm EB, Spiegelman D, Chiuve SE, Borgi L et al. Plant-Based Dietary Patterns and Incidence of Type 2 Diabetes in US Men and Women: Results from Three Prospective Cohort Studies. PLoS Medicine, 2016;13(6): 1–18.
. Tucker LA, LeCheminant JD Bailey BW. Meat Intake and Insulin Resistance in Women without Type 2 Diabetes. Journal of Diabetes Research. 2015; 2015: 174742.
. Lovejoy JC. The influence of dietary fat on insulin resistance. Curr Diabet. Rep 2002;2(5): 435–440. h
. Satija A, Bhupathiraju S, Spiegelman D, Chiuve SE, Manson J, Willett WC. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in US adults. J Am Coll Cardiol.2017; 70(4): 411–422.
Taskinen RE, Hantunen S, Tuomainen TP, Virtanen JK. The associations between whole grain and refined grain intakes and serum C-reactive protein. Eur J. Clin Nutr. 2021;1989(August)..
Wang DD, Li Y, Bhupathiraju SN, Rosner BA, Sun Q, Giovannucci EL et al. Fruit and Vegetable Intake and Mortality: Results from 2 Prospective Cohort Studies of US Men and Women and a Meta-Analysis of 26 Cohort Studies. Circulation, 2021;1642–1654.
. Ahluwalia N, Andreeva V A, Kesse-Guyot E, Hercberg S,. Dietary patterns, inflammation and the metabolic syndrome. Diab Metab. 2013;39(2): 99–110
. Guo R, Li N, Yang R, Liao XY, Zhang Y, Zhu B F et al. Effects of the Modified DASH Diet on Adults With Elevated Blood Pressure or Hypertension: A Systematic Review and Meta-Analysis. Frontiers Nutr 2021;8: 1–9.
. Liese, A. D., Nichols, M., Sun, X., D’Agostino, R. B., & Haffner, S. M. Adherence to the DASH diet is inversely associated with incidence of type 2 diabetes: The insulin resistance atherosclerosis study. Diabetes Care. 2009;32(8), 1434–1436.
Campbell AP. DASH eating plan: An eating pattern for diabetes management. Diabetes Spec, 2017; 30(2), 76–81.
. Sakhaei R, Shahvazi S, Mozaffari-Khosravi H, Samadi M, Khatibi N, Nadjarzadeh et al. A The Dietary Approaches to Stop Hypertension (DASH)-Style Diet and an Alternative Mediterranean Diet are Differently Associated with Serum Inflammatory Markers in Female Adults. Food Nutr. Bull. 2018;39(3), 361–376.
. Shirani F, Salehi-Abargouei A, & Azadbakh, L. Effects of Dietary Approaches to Stop Hypertension (DASH) diet on some risk for developing type 2 diabetes: A systematic review and meta-analysis on controlled clinical trials. Nutrition, 2013;29(7–8), 939–947.
. Azadbakht L, Surkan PJ, Esmaillzadeh A, Willett WC. The dietary approaches to stop hypertension eating plan affects C-reactive protein, coagulation abnormalities, and hepatic function tests among type 2 diabetic patients. J Nutr. 2011;141(6), 1083–1088.
. Soltani S, Chitsazi MJ, Salehi-Abargouei A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. In Clinical Nutrition. 2018; 37. Elsevier Ltd
. Thorand B, Löwel H, Schneider A, Kolb H, Meisinger C, Fröhlich M, Koenig W. C-reactive protein as a predictor for incident diabetes mellitus among middle-aged men: Results from the MONICA Augsburg Cohort Study, 1984-1998. Arch, J. Int Med. 2003;163(1), 93–99
. Wang X, Bao W, Liu J, Ouyang YY, Wang D, Rong S., et al. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care. 2013;36(1), 166–175.
. Hashemi R, Mehdizadeh Khalifani A, Rahimlou M, Manafi M. Comparison of the effect of Dietary Approaches to Stop Hypertension diet and American Diabetes Association nutrition guidelines on lipid profiles in patients with type 2 diabetes: A comparative clinical trial. Nutr. Dietet.. 2020; 77(2); 204–211.
. Delarue J, Magnan C. Free fatty acids and insulin resistance. Curr Opin Clin Nutr Metab Care. 2007;10(7), 142–148.
. Smidowicz A, Regula J. Effect of nutritional status and dietary patterns on human serum c-reactive protein and interleukin-6 concentrations. Advances in Nutrition. 2015: 6(6): 738–747.
. Afsar B, Kuwabara M, Ortiz A, Yerlikaya A, Siriopol D, Covic A. et al. Salt intake and immunity. Hypertension 2018: 72(1): 19–23.
. Calder P.C. Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 2015;1851:469–484.
. Fernandez ML, Blomquist SA, Hallmark B, Chilton, FH. Omega-3 supplementation and heart disease: A population based, diet by gene analysis of clinical trial outcomes. Nutrients, 2021; 13: 2154.
Giacobbe J., Benoiton B., Zunszain P., Pariante C.M., Borsini A. The anti-inflammatory role of omega-3 polyunsaturated fatty acids metabolites in pre-clinical models of psychiatric, neurodegenerative and neurological disorders. Front. Psychiatry. 2020;11:122..
. Fontes J.D., Rahman F., Lacey S., Larson M.G., Vasan R.S., Benjamin E.J., Harris W.S., Robins S.J. Red blood cell fatty acids and biomarkers of inflammation: A cross-sectional study in a community-based cohort. Atherosclerosis. 2015;240:431–436..
. Natto ZS, Yaghmoor W, Alshaeri HK, Van Dyke TE. Omega-3 Fatty Acids Effects on Inflammatory Biomarkers and Lipid Profiles among Diabetic and Cardiovascular Disease Patients: A Systematic Review and Meta-Analysis. Sci Rep. 2019; 9: 18867.
. Chen C, Yang Y, Yu X, Hu S, Shao S. Association between omega‐3 fatty acids consumption and the risk of type 2 diabetes: A meta‐analysis of cohort studies. J Diabetes Investig. 2017; 8(4): 480–488.
. Brown TJ, Brainard J, Song F, Wang X, Abdelhamid A, Hooper L.. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. BMJ. 2019; 366: l4697.
Shaylika Chauhan, Hanish Kodali, Jawad Noor, Karuna Ramteke, Vidisha Gawai. Role of Omega-3 Fatty Acids on Lipid Profile in Diabetic Dyslipidaemia: Single Blind, Randomised Clinical Trial. J Clin Diagn Res. 2017 Mar; 11(3).
. O’Mahoney L.L., Matu J., Price O.J., Birch K.M., Ajjan R.A., Farrar D., Tapp R., West D.J., Deighton K., Campbell M.D. Omega-3 polyunsaturated fatty acids favourably modulate cardiometabolic biomarkers in type 2 diabetes: A meta-analysis and meta-regression of randomized controlled trials. Cardiovasc. Diabetol. 2018;17:98.
. Djuricic I, Calder PC. Beneficial outcomes of omega-6 and omega-3 polyunsaturated fatty acids on human health. An update for 2021. Nutrients. 2021 Jul: 13(7):2421
. Risérus U, Willett WC, Hu FB. Dietary fats and prevention of type 2 diabetes. Prog Lipid Res 2009;48:44–51.
Ros E. Olive oil and CVD: accruing evidence of a protective effect. Br J Nutr 2012;108:1931–1933.
. Martín-Peláez S, Covas MI, Fitó M, Kušar A, Pravst I. Health effects of olive oil polyphenols: recent advances and possibilities for the use of health claims. Mol Nutr Food Res 2013;57:760–71
. Guasch-Ferré M, Liu G, Li Y, Sampson L, Manson JE, Salas-Salvadó J. Olive oil consumption and risk of type 2 diabetes in US women. Am J Clin Nutr. 2015 Aug; 102(2): 479–486.
. Schwingshackl L, Lampousi A-M, Portillo MP, Romaguera D, Hoffmann G, Boeing H. Olive oil in the prevention and management of type 2 diabetes mellitus: a systematic review and meta-analysis of cohort studies and intervention trials. Nutr Diabetes. 2017; 7(4): e262.
. Qian F, Korat AA, Malik V, Hu FB. Metabolic effects of monounsaturated fatty acid–enriched diets compared with carbohydrate or polyunsaturated fatty acid–enriched diets in patients with type 2 diabetes: a systematic review and meta-analysis of randomized controlled trials. Diabetes Care 2016; 39: 1448–1457
. Schwingshackl L, Strasser B. High-MUFA diets reduce fasting glucose in patients with type 2 diabetes. Ann Nutr Metab 2012; 60: 33–34
. Bhatt T, Patel KCarotenoids: Potent to Prevent Diseases Review. Nat Prod Biopros 2010;10(3); 109–117.
. Gammone MA, Riccioni G. Carotenoids: potential allies of cardiovascular health? Food Nutr Res 2015; 1(7): 1–11.
. Ciccone MM, Cortese F, Gesualdo, M., Carbonara S, Zito A, Ricci G et al. Dietary Intake of Carotenoids and Their Antioxidant and Anti-Inflammatory Effects in Cardiovascular Care. Med Inflam. 2013, 782137
. Xu X.-R, Zou Z.-Y, Huang Y.-M, Xiao X, Ma L, Lin X.-M. Serum carotenoids in relation to risk factors for development of atherosclerosis. Clin Biochemy, 2012; 45(16–17), 1357–1361
. Murillo A, DiMarco D, Fernandez ML. The Potential of Non-Provitamin A Carotenoids for the Prevention and Treatment of Non-Alcoholic Fatty Liver Disease. Biology, 2016; 5(4): 42.
. Sluijs I, Cadier E, Beulens JW, van der A DL, Spijkerman MW, van der Schouw Y T. Dietary intake of carotenoids and risk of type 2 diabetes. Nutr Met Card Dis 2015; 25(4), 376–381.
. Shah S, Iqbal M, Karam J, Salifu M, McFarlane SI. Oxidative Stress, Glucose Metabolism, and the Prevention of Type 2 Diabetes: Pathophysiological Insights. Anttiox Redox Signal 2007;9(7), 911–929
. Pisoschi AM. Pop A. The role of antioxidants in the chemistry of oxidative stress: A review.Eur J Med Chem. 2015; 97: 55–74.
. Mashhadi NS, Zakerkish M, Mohammadiasl J, Zarei M, Mohammadshah, M, Haghighizadeh MH. Astaxanthin improves glucose metabolism and reduces blood pressure in patients with type 2 diabetes mellitus. Asian Pac J of Clin Nutr. 2018; 27(2): 341–346
Murillo AG, Fernandez ML. Potential of Dietary Non-Provitamin A Carotenoids in the Prevention and Treatment of Diabetic Microvascular Complications. Adv Nutr 2016;7(9), 14–24
Abdel-Aal E.-SM, Akhtar H, Zaheer K Ali R. Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients. 2013; 5(4), 1169–1185.
. Bian Q, Gao S, Zhou J, Qin J, Taylor A, Johnson EJ et al. Lutein and zeaxanthin supplementation reduces photooxidative damage and modulates the expression of inflammation-related genes in retinal pigment epithelial cells. Free Rad Biol Med 2012;53(6): 1298–1307.
. Murillo AG, Hu S,Fernandez ML. Zeaxanthin : Metabolism , Properties, and Antioxidant Protection of Eyes , Heart , Liver , and Skin. Antioxidants 2019;8(390): 1–18.
Brazionis L, Rowley K, Itsiopoulos C, O’Dea K. Plasma carotenoids and diabetic retinopathy.Brit J Nutr. 2009;101(2):270–277.
Neelam K, Goenadi CJ, Lun K, Yip CC, Au Eong KG. Putative protective role of lutein and zeaxanthin in diabetic retinopathy. Brit J Ophtalmol. 2017;101(5): 551–558.
. Zhang PC, Wu CR, Wang ZL, Wang LY, Han Y, Sun SL et al. Effect of lutein supplementation on visual function in nonproliferative diabetic retinopathy. Asia Pacific J Clinl Nutr. 2017; 26(3): 406–411.
Wang PC, Wu CR, Wang ZL, Wang LY, Han Y, Sun SL et al.Effect of lutein supplementation on visual function in nonproliferative diabetic retinopathy. Asia Pacific J Clin Nutr, 2017;26(3): 406–411.
Kowluru RA, Menon B, Gierhart DL. Beneficial effect of zeaxanthin on retinal metabolic abnormalities in diabetic rats. Invest Ophtalmol Vis Sci, 2008;49(4): 1645–1651.
. Caseiro M, Ascenso A, Costa A, Creagh-Flynn J, Johnson M, Simões S. (2020). Lycopene in human health. Lwt, 2020;127: 109323.
. Zeng Z, He W., Jia Z, Hao S. Lycopene Improves Insulin Sensitivity through Inhibition of STAT3/Srebp-1c-Mediated Lipid Accumulation and Inflammation in Mice fed a High-Fat Diet.Exp Clin Endocrinol Diabetes. 2017; 125(9), 610–617.
. Leh HE, Mohd Sopian M, Abu Bakar MH, Lee LK. The role of lycopene for the amelioration of glycaemic status and peripheral antioxidant capacity among the Type II diabetes mellitus patients: a case–control study. Annals Med1;53(1): 1058–1064.
. Cory H, Passarelli S, Szeto J, Tamez M, Mattei, J. The role of polyphenols in human health and food systems: A Mini-Review.Front Nutr 2018;5: 1–9.
. Singla RK, Dubey AK, Garg A, Sharma RK, Fiorino M, Ameen SM et al.. Natural polyphenols: Chemical classification, definition of classes, subcategories, and structures. J AOAC Internl 2019;102(5):1397–1400.
. Fraga CG, Croft KD, Kennedy DO, Tomás-Barberán FA. The effects of polyphenols and other bioactives on human health. Food Funct 2019;10(2), 514–528.
. Zern TL, Fernandez ML. Cardioprotective effects of dietary polyphenols J. Nutr. 2005; 135:2291-2294.
. Murillo AG, Fernandez ML. The relevance of dietary polyphenols in cardiovascular protection. Curr Pharm Des 2017:23:1-9
. Zhou Y, Zheng J, Li Y, Xu DP, Li S, Chen,YM, et al.. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016;8(8).
. Meydani M, Hasan ST. Dietary polyphenols and obesity. Nutrients 2010.;2(7); 737–751..
. Silveira AC, Dias JP, Santos VM, Oliveira PF, Alves MG, Rato L. et al. The Action of Polyphenols in Diabetes Mellitus and Alzheimer’s Disease: A Common Agent for Overlapping Pathologies. Curr Neuropharm, 2018;17(7): 590–613.
. Nanjan MJ, Betz J. Resveratrol for the management of diabetes and its downstream pathologies. Europ Endocrinol 2014;10(1), 31–35.
. Movahed,A, Nabipour I, Lieben LX, Thandapilly SJ Yu L, Kalantarhormozi M et al,. Antihyperglycemic effects of short term resveratrol supplementation in type 2 diabetic patients. Eviden Based Complement Alternat Med 2013;2013.
. Bhatt JK, Thomas S, Nanjan MJ. Resveratrol supplementation improves glycemic control in type 2 diabetes mellitus. Nutr Res 2012;32(7): 537–541.
. Aryaeian N, Sedeh, SK, Arablou T. Polyphenols and their effects on diabetes management: A review Med J. Islam Rep Iran 2017;31(1): 886–892.
. Tomé-Carneiro J, Larrosa M, Yáñez-Gascón,M. J, Dávalos A, Gil-Zamorano J, Gonzálvez, M. et al. One-year supplementation with a grape extract containing resveratrol modulates inflammatory-related microRNAs and cytokines expression in peripheral blood mononuclear cells of type 2 diabetes and hypertensive patients with coronary artery disease. Pharmacol Res 2013:72: 69–82.
. Rouse M, Younès A, Egan JM. Resveratrol and curcumin enhance pancreatic β-cell function by inhibiting phosphodiesterase activity. J. Endocrinol. 2014;223(2):107–117.
. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M. et al. Resveratrol: A double-edged sword in health benefits. Biomedicines, 2018;6(3):1–20
. González R, Ballester, I, López-Posadas R, Suárez MD, Zarzuelo A,Martínez-Augustin O, Sánchez de Medina F. Effects of flavonoids and other polyphenols on inflammation Crit Rev Food Sci Nutr.2011;51(4): 331–362.
. Tayyem RF, Heath DD, Al-Delaimy WK Rock CL. Curcumin content of turmeric and curry powders. Nutr Cancer 2006;55(2): 126–131.
. Zhang DW, Fu M, Gao SH, Liu J L. Curcumin and diabetes: A systematic review. Evidence Bas Comp Alt Med 2013;2013.
. Soetikno V, Sari FR, Veeraveedu PT, Thandavarayan RA, Harima M, Sukumaran V et al.. Curcumin ameliorates macrophage infiltration by inhibiting NF-B activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr Metab 2011;8(1): 35.
. He H.-J, Wang G.-Y, Gao Y, Ling W.-H, Zhi-Wen Y, Tian-Ru J. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabet. 2012;3(5): 94.
. Na LX., Zhang YL, Li Y, Liu LY, Li R, Kong T, Sun CH. Curcumin improves insulin resistance in skeletal muscle of rats. Nutr Metab Cardiovas Dis 2011;21(7): 526–533.
. Hodaei H, Adibian M, Nikpayam O, Hedayati M, Sohrab G. The effect of curcumin supplementation on anthropometric indices, insulin resistance and oxidative stress in patients with type 2 diabetes: A randomized, double-blind clinical trial. Diabe Met Synd. 2019;11(1), 1–8.
. Pivari F, Mingione A, Brasacchio C, Soldati L. Curcumin and type 2 diabetes mellitus: Prevention and treatment. Nutrients 2019;11(8)
. Wang S, Moustaid-Moussa N, Chen L, Mo H, Shastri A, Su R. Novel insights of dietary polyphenols and obesity. J. Nutr Biochem 2014;25(1): 1–18
. Velayutham P, Babu A, Liu D. Green tea catechins and cardiovascular health: an update. Curr Med Chem. 2008:15(18):1840–1850.
. Miura Y, Chiba T, Tomita I, Koizumi H, Miura S, Umegaki K. et al.Tea catechins prevent the development of atherosclerosis in apoprotein E-deficient mice. J. Nutr 2001: 131(1): 27–32.
. Karthikeyan E, Pawar M RV. Role of Catechins in Diabetes Mellitus. Eur J Molec Clin Med. 2001:8(2):1730–1735.
. Nagao T, Meguro S, Hase T, Otsuka K, Komikado M, Tokimitsu I. et al. A catechin-rich beverage improves obesity and blood glucose control in patients with type 2 diabetes. Obesity. 2009; 17(2), 310–317.
. Brown AL, Lane J, Coverly J, Stocks J, Jackson S, Stephen A, et al. Effects of dietary supplementation with green tea polyphenol epigallocatechin-3-gallate on insulin resistance and associated metabolic risk factors : randomized controlled trial. Blood, 2010;101(6):1–18.
. Zheng, X X, Xu YL, Li S H. Hui R, Wu Y J, Huang XH. Effects of green tea catechins with or without caffeine on glycemic control in adults: A meta-analysis of randomized controlled trials. Am J Clin Nutr 2013;97(4): 750–762.
. Nie J, Yu,C, Guo Y, Pei P, Chen L, Pang Y et al. Tea consumption and long-term risk of type 2 diabetes and diabetic complications: A cohort study of 0.5 million Chinese adults. Am J Clin Nutr 2021:114(1): 194–202.
. Manolescu D.C, Sima A, Bhat P.V. All-trans retinoic acid lowers serum retinol-binding protein 4 concentrations and increases insulin sensitivity in diabetic mice. J. Nutr. 2010;140(2):311–316.
. Odum E.P, Ejilemele A.A, Wakwe V.C. Antioxidant status of type 2 diabetic patients in Port Harcourt, Nigeria. Niger. J. Clin. Pract. 2012;15(1):55–58.
. Gonzalez-Ortiz M, -Nez-Abundis E, Robles-Cervantes J.A, Ramirez V, Ramos-Zavala M.G. Effect of thiamine administration on metabolic profile, cytokines and inflammatory markers in patients with type 2 diabetes. Eur. J. Nutr. 2011;50(2):145–149.
. Valdez-Ramos R, Guadarrama-Lopez AL, Martinez-Carillo B, Benitez-Arciniega AD. Vitamins and Type 2 Diabetes Mellitus. Endocr Metab Immune Disord Drug Targets 2015: Mar;15(1):54-63.
. Mazloom Z, Hejazi N, Dabbaghmanesh M.H, Tabatabaei H.R, Ahmadi A, Ansar H. Effect of vitamin C supplementation on postprandial oxidative stress and lipid profile in type 2 diabetic patients. Pak. J. Biol. Sci. 2011;14(19):900–904
. Ibarrola-Jurado N, Salas-SalvadA3 J, MartA-nez-GonzA lez M.A, BullA3 M. Dietary phylloquinone intake and risk of type 2 diabetes in elderly subjects at high risk of cardiovascular disease. Am. J. Clin. Nutr. 2012;96(5):1113–1118.
. Afzal S., Bojesen S.E., Nordestgaard B.G. Low 25-hydroxyvitamin D and risk of Type 2 diabetes: A prospective cohort study and metaanalysis. Clin. Chem. 2013;59:381–391.
. Leung P. The potential protective action of vitamin d in hepatic insulin resistance and pancreatic islet dysfunction in Type 2 diabetes Mellitus. Nutrients. 2016;8:147. doi: 10.3390/nu8030147.
Pittas A.G., Lau J., Hu F.B., Dawson-Hughes B. The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2007;92:2017–2029.
. Giulietti A., van Etten E., Overbergh L., Stoffels K., Bouillon R., Mathieu C. Monocytes from type 2 diabetic patients have a pro-inflammatory profile. Diabetes Res. Clin. Pract. 2007;77:47–57.
. Tabesh M., Azadbakht L., Faghihimani E., Tabesh M., Esmaillzadeh A. Effects of calcium-vitamin D co-supplementation on metabolic profiles in vitamin D insufficient people with Type 2 diabetes: A randomised controlled clinical trial. Diabetologia. 2014;57:2038–2047. doi: 10.1007/s00125-014-3313-x.
. Anderson R.A., Polansky M.M., Bryden N.A., Roginski E.E., Mertz W., Glinsmann W. Chromium supplementation of human subjects: Effects on glucose, insulin, and lipid variables. Metabolism. 1983;32:894–899.
. Costello RB, Dwyer JT, Bailey RL. Chromium supplements for glycemic control in type 2 diabetes: limited evidence of effectiveness. . Nutr Rev. 2016 Jul; 74(7): 455–468.
. Wang N, Tan HY, Si S, Xu Y, Guo W, Feng Y. S Supplementation of Micronutrient Selenium in Metabolic Diseases: Its Role as an Antioxidant. Oxid Med Cell Longev. 2017; 2017: 7478523.
. Stranges S., Marshall J. R., Natarajan R., et al. Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Annals Int Med. 2007;147(4):217–223.