The Effect of Mitral Valve Prostheses Design and Orientation on Left Ventricular Flow during Left Ventricular Assist Device Support

Main Article Content

Vu V. Montes R. Campos J. May-Newman K.

Abstract

The mitral valve affects the shape and timing of incoming flow to the left ventricle of the heart, establishing a strong central jet that generates a vortex ring that conserves momentum during the cardiac cycle. When the vortex is disrupted, regions of stasis are introduced that increase blood residence time and the risk of thrombus formation. This risk is increased when multiple medical devices are combined, as occurs in the fraction of patients with mitral valve prostheses that experience heart failure and receive treatment with a left ventricular assist device (LVAD). LVADs are attached directly to the apex of the left ventricle, continuously pumping blood from the heart into the ascending aorta. While LVADs ameliorate the symptoms of heart failure, they are associated with thromboembolic events that result from disrupted blood flow. In this study, six different mitral prosthesis designs/orientations were studied in combination with LVAD support in a mock circulatory loop. Hemodynamics and the intraventricular velocity field were measured and the vortex characteristics determined. The bioprosthetic valve produced the standard flow pattern with a dominant clockwise vortex that circulated within the left ventricle before exiting through the LVAD. The tilting disk valve exhibited skewed inflow that produced a reverse vortex pattern when oriented towards the septum, which greatly increased stasis and residence time. The bileaflet valves split the incoming flow into two streams directed towards the apex but produced weaker vortices than the bioprosthesis. The results inform the surgical planning for LVAD patients with preexisting mitral prostheses, enabling concomitant repair procedures that would decrease the risk of thromboembolic events.

Keywords: Ventricular Flow, Left Ventricular Flow, Left Ventricular Flow during Left Ventricular Assist Device Support, Device Support, Mitral Valve, Prostheses Design, Mitral Valve Prostheses Design

Article Details

How to Cite
V., Vu et al. The Effect of Mitral Valve Prostheses Design and Orientation on Left Ventricular Flow during Left Ventricular Assist Device Support. Medical Research Archives, [S.l.], v. 11, n. 2, feb. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3551>. Date accessed: 28 mar. 2024. doi: https://doi.org/10.18103/mra.v11i2.3551.
Section
Research Articles

References

1. Nkomo VT, Gardin JM, Skelton TN, Gottdiener JS, Scott CG, Enriquez-Sarano M. Burden of valvular heart diseases: a population-based study. Lancet (London, England). 2006;368(9540):1005-1011. doi:10.1016/S0140-6736(06)69208-8
2. Hsich EM, Rogers JG, McNamara DM, et al. Does Survival on the Heart Transplant Waiting List Depend on the Underlying Heart Disease? JACC Heart Fail. 2016;4(9):689-697. doi:10.1016/j.jchf.2016.03.010
3. Park SJ, Tector A, Piccioni W, et al. Left ventricular assist devices as destination therapy: a new look at survival. J Thorac Cardiovasc Surg. 2005;129(1):9-17. doi:10.1016/j.jtcvs.2004.04.044
4. Miller LW, Pagani FD, Russell SD, et al. Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med. 2007;357(9):885-896. doi:10.1056/NEJMoa067758
5. Robertson JO, Naftel DC, Myers SL, et al. Concomitant mitral valve procedures in patients undergoing implantation of continuous-flow left ventricular assist devices: An INTERMACS database analysis. J Hear lung Transplant Off Publ Int Soc Hear Transplant. 2018;37(1):79-88. doi:10.1016/j.healun.2017.09.016
6. Vu V, Rossini L, Montes R, et al. Mitral Valve Prosthesis Design Affects Hemodynamic Stasis and Shear In The Dilated Left Ventricle. Ann Biomed Eng. 2019;47(5). doi:10.1007/s10439-019-02218-z
7. Faludi R, Szulik M, D’hooge J, et al. Left ventricular flow patterns in healthy subjects and patients with prosthetic mitral valves: an in vivo study using echocardiographic particle image velocimetry. J Thorac Cardiovasc Surg. 2010;139(6):1501-1510. doi:10.1016/j.jtcvs.2009.07.060
8. Pedrizzetti G, Domenichini F, Tonti G. On the left ventricular vortex reversal after mitral valve replacement. Ann Biomed Eng. 2010;38(3):769-773. doi:10.1007/s10439-010-9928-2
9. Yin W, Alemu Y, Affeld K, Jesty J, Bluestein D. Flow-induced platelet activation in bileaflet and monoleaflet mechanical heart valves. Ann Biomed Eng. 2004;32(8):1058-1066. doi:10.1114/B:ABME.0000036642.21895.3f
10. Yin W, Gallocher S, Pinchuk L, Schoephoerster RT, Jesty J, Bluestein D. Flow-induced platelet activation in a St. Jude mechanical heart valve, a trileaflet polymeric heart valve, and a St. Jude tissue valve. Artif Organs. 2005;29(10):826-831. doi:10.1111/j.1525-1594.2005.29109.x
11. Alemu Y, Bluestein D. Flow-induced Platelet Activation and Damage Accumulation in a Mechanical Heart Valve : Numerical Studies. 2007;31(9):677-688. doi:10.1111/j.1525-1594.2007.00446.x
12. Bluestein D, Yin W, Affeld K, Jesty J. Flow-induced platelet activation in mechanical heart valves. J Heart Valve Dis. 2004;13(3):501-508. http://www.ncbi.nlm.nih.gov/pubmed/15446502
13. Campos N. Comparison of the occurrence of thromboembolic and bleeding complications in patients with mechanical heart valve prosthesis with one and two leaflets in the mitral position. Rev Bras Cir Cardiovasc. 2014;29(1):59-68.
14. Schweiger M, Stepanenko A, Vierecke J, et al. Preexisting mitral valve prosthesis in patients undergoing left ventricular assist device implantation. Artif Organs. 2012;36(1):49-53. doi:10.1111/j.1525-1594.2011.01304.x
15. Lowe GD. Virchow’s triad revisited: abnormal flow. Pathophysiol Haemost Thromb. 2003;33(5-6):455-457. doi:83845
16. Barbone A, Rao V, Oz MC, Naka Y. LVAD support in patients with bioprosthetic valves. Ann Thorac Surg. 2002;74(1):232-234. doi:10.1016/s0003-4975(01)03514-7
17. Schubmehl HB, Saric M, Vainrib AF, Williams M, Balsam LB. Rapid Bioprosthetic Mitral Valve Failure after Temporary Left Ventricular Assist Device Support. Heart Surg Forum. 2017;20(6):E256-E257. doi:10.1532/hsf.1861
18. Liu T, Jessup M, Acker M, Morris R. Management of prosthetic valves during ventricular assist device implantation. J Card Surg. 2010;25(5):601-605. doi:10.1111/j.1540-8191.2010.01098.x
19. Krishan K, Pinney S, Anyanwu AC. Successful use of continuous flow ventricular assist device in a patient with mechanical mitral and aortic valve prosthesis without replacement or exclusion of valves. Interact Cardiovasc Thorac Surg. 2010;10(2):325-327. doi:10.1510/icvts.2009.221036
20. Mussa S, Large S, Tsui S, van Doorn C, Jenkins D. Mechanical mitral prosthesis with a short-term left ventricular assist device. ASAIO J. 2008;54(4):439-441. doi:10.1097/MAT.0b013e31817c921b
21. Mokashi SA, Schmitto JD, Lee LS, et al. Ventricular assist device in patients with prosthetic heart valves. Artif Organs. 2010;34(11):1030-1034. doi:10.1111/j.1525-1594.2010.01102.x
22. Wong K, Samaroo G, Ling I, et al. Intraventricular flow patterns and stasis in the LVAD-assisted heart. J Biomech. 2014;47(6). doi:10.1016/j.jbiomech.2013.12.031
23. Reider C, Moon J, Ramesh V, et al. Intraventricular thrombus formation in the LVAD-assisted heart studied in a mock circulatory loop. Meccanica. 2017;52(3). doi:10.1007/s11012-016-0433-z
24. Williams MR, Oz MC. Indications and patient selection for mechanical ventricular assistance. Ann Thorac Surg. 2001;71(3 Suppl):S86-91; discussion S114-5. doi:10.1016/s0003-4975(00)02627-8
25. Ky B, French B, May Khan A, et al. Ventricular-arterial coupling, remodeling, and prognosis in chronic heart failure. J Am Coll Cardiol. 2013;62(13):1165-1172. doi:10.1016/j.jacc.2013.03.085
26. Bermejo J, Benito Y, Alhama M, et al. Intraventricular vortex properties in non-ischemic dilated cardiomyopathy. Am J Physiol Hear Circ Physiol. 2014;306(5):H718-29. doi:10.1152/ajpheart.00697.2013
27. Rossini L, Martinez-Legazpi P, Vu V, et al. A clinical method for mapping and quantifying blood stasis in the left ventricle. J Biomech. 2016;49(11):2152-2161. doi:10.1016/j.jbiomech.2015.11.049
28. Querzoli G, Fortini S, Cenedese A. Effect of the prosthetic mitral valve on vortex dynamics and turbulence of the left ventricular flow. Phys Fluids. 2010;22(4):1-10. doi:10.1063/1.3371720
29. Kilner PJ, Yang GZ, Wilkes a J, Mohiaddin RH, Firmin DN, Yacoub MH. Asymmetric redirection of flow through the heart. Nature. 2000;404(6779):759-761. doi:10.1038/35008075
30. Martinez-Legazpi P, Bermejo J, Benito Y, et al. Contribution of the diastolic vortex ring to left ventricular filling. J Am Coll Cardiol. 2014;64(16):1711-1721. doi:10.1016/j.jacc.2014.06.1205
31. Pierrakos O, Tech V, Alley M, Telionis D. Vortex Dynamics and Energetics in Left Ventricular Flows Vortex Dynamics and Energetics in Left Ventricular Flows. Heart. Published online 2006.
32. Pedrizzetti G, Domenichini F. Nature Optimizes the Swirling Flow in the Human Left Ventricle. Phys Rev Lett. 2005;95(10):1-4. doi:10.1103/PhysRevLett.95.108101
33. Hendabadi S, Bermejo J, Benito Y, et al. Topology of blood transport in the human left ventricle by novel processing of Doppler echocardiography. Ann Biomed Eng. 2013;41(12):2603-2616. doi:10.1007/s10439-013-0853-z
34. Alexandru G. Fredriksson, Jakub Zajac JE. 4-D blood flow in the human right ventricle. Am J Physiol Hear Circ Physiol. 2011;301:H2344-H2350. doi:10.1152/ajpheart.00622.2011.
35. Bermejo J, Benito Y, Alhama M, et al. Intraventricular vortex properties in nonischemic dilated cardiomyopathy. Am J Physiol Heart Circ Physiol. 2014;306(5):H718-29. doi:10.1152/ajpheart.00697.2013
36. Fredriksson AG, Svalbring E, Eriksson J, et al. 4D flow MRI can detect subtle right ventricular dysfunction in primary left ventricular disease. J Magn Reson Imaging. 2016;43(3):558-565. doi:10.1002/jmri.25015
37. Rossini L, Martinez-Legazpi P, Benito Y, et al. Clinical assessment of intraventricular blood transport in patients undergoing cardiac resynchronization therapy. Meccanica. 2017;52(3). doi:10.1007/s11012-015-0322-x
38. Okafor I, Santhanakrishnan A, Raghav V, Yoganathan AP. Role of Mitral Annulus Diastolic Geometry on Intraventricular Filling Dynamics. J Biomech Eng. 2015;137(December):1-9. doi:10.1115/1.4031838
39. Bloodworth CH 4th, Pierce EL, Kohli K, et al. Impact of simulated MitraClip on forward flow obstruction in the setting of mitral leaflet tethering: An in vitro investigation. Catheter Cardiovasc Interv Off J Soc Card Angiogr Interv. 2018;92(4):797-807. doi:10.1002/ccd.27692
40. Rao V, Slater JP, Edwards NM, Naka Y, Oz MC. Surgical management of valvular disease in patients requiring left ventricular assist device support. Ann Thorac Surg. 2001;71(5):1448-1453. doi:S0003-4975(01)02479-1 [pii]
41. Domenichini F, Querzoli G, Cenedese A, Pedrizzetti G. Combined experimental and numerical analysis of the flow structure into the left ventricle. J Biomech. 2007;40(9):1988-1994. doi:10.1016/j.jbiomech.2006.09.024