Unique Characteristics of Neonatal T Cells

Main Article Content

Kempis-Calanis L. A. Rodríguez-Jorge O. Ventura-Martínez C. J. Gutiérrez-Reyna D. Y. Spicuglia S. Santana M.A.

Abstract

Birth causes complex changes in the individual physiology and organ systems and certainly poses a big immune challenge. The sudden encounter with an antigen full world, with the exposure to food antigens, and the colonization of the skin and mucosa with microbiota, require a tolerant immune system. Nevertheless, neonates must also be able to deal with pathogens, which makes their immune system unique.


T lymphocytes are responsible for the coordination of the adaptive immune system response, the elimination of infected cells and the type of immune response and memory. It has been shown that neonatal cells have intrinsic differences with adult cells, biased towards an innate response and a tolerant phenotype.


In the perinatal period, the immune system changes from basal signaling and innate like responses, towards stimulus-specific signals, which increase with gestational age.  After birth the cells of the immune system continue to change both in composition and function.


In this review, we present the intrinsic differences of neonatal CD4+ and CD8+ T cells, as compared with adult naïve cells. A specific transcriptome profile is present in both CD4+ and CD8+ neonatal T cells, with overexpression of homeobox transcription factors. These cells also present differences in cell signaling and metabolic characteristics, which result in unique functional capabilities. Neonatal CD4+ T cells respond differently from adult cells, with a high production of IL-8, a prevalent Th2 over Th1 profile, and an innate inflammatory response.


The neonatal period is one of the most vulnerable periods of life, with a high morbidity and mortality rate, approaching on average 17 deaths per 1000 live births worldwide. A better understanding of the neonatal immune system will help to ensure a better care of this vulnerable population.

Article Details

How to Cite
A., Kempis-Calanis L. et al. Unique Characteristics of Neonatal T Cells. Medical Research Archives, [S.l.], v. 11, n. 1, jan. 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3568>. Date accessed: 23 apr. 2024.
Section
Research Articles

References

1. Morton SU, Brodsky D. Fetal Physiology and the Transition to Extrauterine Life. Clin Perinatol. Sep 2016;43(3):395-407. doi:10.1016/j.clp.2016.04.001
2. PrabhuDas M, Adkins B, Gans H, et al. Challenges in infant immunity: implications for responses to infection and vaccines. Nat Immunol. Mar 2011;12(3):189-94. doi:10.1038/ni0311-189
3. (https://www.unicef.org/reports/levels-and-trends-child-mortality-report-2019). Levels and trends in child mortality report.
4. Peterson LS, Hedou J, Ganio EA, et al. Single-Cell Analysis of the Neonatal Immune System Across the Gestational Age Continuum. Front Immunol. 2021;12:714090. doi:10.3389/fimmu.2021.714090
5. Tosato F, Bucciol G, Pantano G, et al. Lymphocytes subsets reference values in childhood. Cytometry A. Jan 2015;87(1):81-5. doi:10.1002/cyto.a.22520
6. Upham JW, Lee PT, Holt BJ, et al. Development of interleukin-12-producing capacity throughout childhood. Infect Immun. Dec 2002;70(12):6583-8. doi:10.1128/IAI.70.12.6583-6588.2002
7. Wang X, Mou W, Qi Z, et al. Neonates are armed with deviated immune cell proportion and cytokine reduction but higher T cell proliferation potentiality. Acta Biochim Biophys Sin (Shanghai). Sep 1 2018;50(9):934-937. doi:10.1093/abbs/gmy079
8. Galindo-Albarran AO, Lopez-Portales OH, Gutierrez-Reyna DY, et al. CD8(+) T Cells from Human Neonates Are Biased toward an Innate Immune Response. Cell Rep. Nov 15 2016;17(8):2151-2160. doi:10.1016/j.celrep.2016.10.056
9. Gutierrez-Reyna DY, Cedillo-Banos A, Kempis-Calanis LA, et al. IL-12 Signaling Contributes to the Reprogramming of Neonatal CD8(+) T Cells. Front Immunol. 2020;11:1089. doi:10.3389/fimmu.2020.01089
10. Razzaghian HR, Sharafian Z, Sharma AA, et al. Neonatal T Helper 17 Responses Are Skewed Towards an Immunoregulatory Interleukin-22 Phenotype. Front Immunol. 2021;12:655027. doi:10.3389/fimmu.2021.655027
11. Rudd BD. Neonatal T Cells: A Reinterpretation. Annu Rev Immunol. Apr 26 2020;38:229-247. doi:10.1146/annurev-immunol-091319-083608
12. Chen L, Flies DB. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. Apr 2013;13(4):227-42. doi:10.1038/nri3405
13. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. Jul 2015;74(1):5-17. doi:10.1016/j.cyto.2014.09.011
14. Takase K, Saito T. [T cell activation]. Ryumachi. Oct 1995;35(5):853-61.
15. Szabo SJ, Sullivan BM, Peng SL, Glimcher LH. Molecular mechanisms regulating Th1 immune responses. Annu Rev Immunol. 2003;21:713-58. doi:10.1146/annurev.immunol.21.120601.140942
16. Licona-Limon P, Kim LK, Palm NW, Flavell RA. TH2, allergy and group 2 innate lymphoid cells. Nat Immunol. Jun 2013;14(6):536-42. doi:10.1038/ni.2617
17. Chen J, Guan L, Tang L, et al. T Helper 9 Cells: A New Player in Immune-Related Diseases. DNA Cell Biol. Oct 2019;38(10):1040-1047. doi:10.1089/dna.2019.4729
18. Puerta-Arias JD, Mejia SP, Gonzalez A. The Role of the Interleukin-17 Axis and Neutrophils in the Pathogenesis of Endemic and Systemic Mycoses. Front Cell Infect Microbiol. 2020;10:595301. doi:10.3389/fcimb.2020.595301
19. Duhen T, Geiger R, Jarrossay D, Lanzavecchia A, Sallusto F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat Immunol. Aug 2009;10(8):857-63. doi:10.1038/ni.1767
20. Dowling MR, Kan A, Heinzel S, Marchingo JM, Hodgkin PD, Hawkins ED. Regulatory T Cells Suppress Effector T Cell Proliferation by Limiting Division Destiny. Front Immunol. 2018;9:2461. doi:10.3389/fimmu.2018.02461
21. Rackaityte E, Halkias J. Mechanisms of Fetal T Cell Tolerance and Immune Regulation. Front Immunol. 2020;11:588. doi:10.3389/fimmu.2020.00588
22. Dammann O, O'Shea TM. Cytokines and perinatal brain damage. Clin Perinatol. Dec 2008;35(4):643-63, v. doi:10.1016/j.clp.2008.07.011
23. Gotsch F, Romero R, Kusanovic JP, et al. The fetal inflammatory response syndrome. Clin Obstet Gynecol. Sep 2007;50(3):652-83. doi:10.1097/GRF.0b013e31811ebef6
24. Vitoratos N, Papadias C, Economou E, Makrakis E, Panoulis C, Creatsas G. Elevated circulating IL-1beta and TNF-alpha, and unaltered IL-6 in first-trimester pregnancies complicated by threatened abortion with an adverse outcome. Mediators Inflamm. 2006;2006(4):30485. doi:10.1155/MI/2006/30485
25. Burt TD. Fetal regulatory T cells and peripheral immune tolerance in utero: implications for development and disease. Am J Reprod Immunol. Apr 2013;69(4):346-58. doi:10.1111/aji.12083
26. Levy O. Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol. May 2007;7(5):379-90. doi:10.1038/nri2075
27. Zaghouani H, Hoeman CM, Adkins B. Neonatal immunity: faulty T-helpers and the shortcomings of dendritic cells. Trends Immunol. Dec 2009;30(12):585-91. doi:10.1016/j.it.2009.09.002
28. Basha S, Surendran N, Pichichero M. Immune responses in neonates. Expert Rev Clin Immunol. Sep 2014;10(9):1171-84. doi:10.1586/1744666X.2014.942288
29. Das A, Rouault-Pierre K, Kamdar S, et al. Adaptive from Innate: Human IFN-gamma(+)CD4(+) T Cells Can Arise Directly from CXCL8-Producing Recent Thymic Emigrants in Babies and Adults. J Immunol. Sep 1 2017;199(5):1696-1705. doi:10.4049/jimmunol.1700551
30. Connors TJ, Ravindranath TM, Bickham KL, et al. Airway CD8(+) T Cells Are Associated with Lung Injury during Infant Viral Respiratory Tract Infection. Am J Respir Cell Mol Biol. Jun 2016;54(6):822-30. doi:10.1165/rcmb.2015-0297OC
31. Gibbons D, Fleming P, Virasami A, et al. Interleukin-8 (CXCL8) production is a signatory T cell effector function of human newborn infants. Nat Med. Oct 2014;20(10):1206-10. doi:10.1038/nm.3670
32. White GP, Watt PM, Holt BJ, Holt PG. Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells. J Immunol. Mar 15 2002;168(6):2820-7. doi:10.4049/jimmunol.168.6.2820
33. Bunis DG, Bronevetsky Y, Krow-Lucal E, et al. Single-Cell Mapping of Progressive Fetal-to-Adult Transition in Human Naive T Cells. Cell Rep. Jan 5 2021;34(1):108573. doi:10.1016/j.celrep.2020.108573
34. Ng MSF, Roth TL, Mendoza VF, Marson A, Burt TD. Helios enhances the preferential differentiation of human fetal CD4(+) naive T cells into regulatory T cells. Sci Immunol. Nov 22 2019;4(41)doi:10.1126/sciimmunol.aav5947
35. Bermick JR, Issuree P, denDekker A, et al. Differences in H3K4me3 and chromatin accessibility contribute to altered T-cell receptor signaling in neonatal naive CD4 T cells. Immunol Cell Biol. Aug 2022;100(7):562-579. doi:10.1111/imcb.12561
36. Shi X, Ma W, Duan S, et al. Single-cell transcriptional diversity of neonatal umbilical cord blood immune cells reveals neonatal immune tolerance. Biochem Biophys Res Commun. Jun 11 2022;608:14-22. doi:10.1016/j.bbrc.2022.03.132
37. Sanchez-Villanueva JA, Rodriguez-Jorge O, Ramirez-Pliego O, et al. Contribution of ROS and metabolic status to neonatal and adult CD8+ T cell activation. PLoS One. 2019;14(12):e0226388. doi:10.1371/journal.pone.0226388
38. Siefker DT, Adkins B. Rapid CD8(+) Function Is Critical for Protection of Neonatal Mice from an Extracellular Bacterial Enteropathogen. Front Pediatr. 2016;4:141. doi:10.3389/fped.2016.00141
39. Zens KD, Chen JK, Guyer RS, et al. Reduced generation of lung tissue-resident memory T cells during infancy. J Exp Med. Oct 2 2017;214(10):2915-2932. doi:10.1084/jem.20170521
40. Nunes-Cabaco H, Ramalho-Dos-Santos A, Pires AR, Martins LR, Barata JT, Sousa AE. Human CD4 T Cells From Thymus and Cord Blood Are Convertible Into CD8 T Cells by IL-4. Front Immunol. 2022;13:834033. doi:10.3389/fimmu.2022.834033
41. Jacomet F, Cayssials E, Basbous S, et al. Evidence for eomesodermin-expressing innate-like CD8(+) KIR/NKG2A(+) T cells in human adults and cord blood samples. Eur J Immunol. Jul 2015;45(7):1926-33. doi:10.1002/eji.201545539
42. Warren HS, Rana PM, Rieger DT, Hewitt KA, Dahlstrom JE, Kent AL. CD8 T cells expressing killer Ig-like receptors and NKG2A are present in cord blood and express a more naive phenotype than their counterparts in adult blood. J Leukoc Biol. Jun 2006;79(6):1252-9. doi:10.1189/jlb.0905536
43. Marcolino I, Przybylski GK, Koschella M, et al. Frequent expression of the natural killer cell receptor KLRG1 in human cord blood T cells: correlation with replicative history. Eur J Immunol. Oct 2004;34(10):2672-80. doi:10.1002/eji.200425282
44. Fike AJ, Kumova OK, Carey AJ. Dissecting the defects in the neonatal CD8(+) T-cell response. J Leukoc Biol. Nov 2019;106(5):1051-1061. doi:10.1002/JLB.5RU0319-105R
45. Girardi T, Vicente C, Cools J, De Keersmaecker K. The genetics and molecular biology of T-ALL. Blood. Mar 2 2017;129(9):1113-1123. doi:10.1182/blood-2016-10-706465
46. Taghon T, Thys K, De Smedt M, et al. Homeobox gene expression profile in human hematopoietic multipotent stem cells and T-cell progenitors: implications for human T-cell development. Leukemia. Jun 2003;17(6):1157-63. doi:10.1038/sj.leu.2402947
47. Alharbi RA, Pettengell R, Pandha HS, Morgan R. The role of HOX genes in normal hematopoiesis and acute leukemia. Leukemia. Apr 2013;27(5):1000-8. doi:10.1038/leu.2012.356
48. Lawrence HJ, Sauvageau G, Humphries RK, Largman C. The role of HOX homeobox genes in normal and leukemic hematopoiesis. Stem Cells. May 1996;14(3):281-91. doi:10.1002/stem.140281
49. Magli MC, Largman C, Lawrence HJ. Effects of HOX homeobox genes in blood cell differentiation. J Cell Physiol. Nov 1997;173(2):168-77. doi:10.1002/(SICI)1097-4652(199711)173:2<168::AID-JCP16>3.0.CO;2-C
50. Cieslak A, Charbonnier G, Tesio M, et al. Blueprint of human thymopoiesis reveals molecular mechanisms of stage-specific TCR enhancer activation. J Exp Med. Sep 7 2020;217(9)doi:10.1084/jem.20192360
51. de Bock CE, Demeyer S, Degryse S, et al. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development. Cancer Discov. May 2018;8(5):616-631. doi:10.1158/2159-8290.CD-17-0583
52. Santana MA, Esquivel-Guadarrama F. Cell biology of T cell activation and differentiation. Int Rev Cytol. 2006;250:217-74. doi:10.1016/S0074-7696(06)50006-3
53. Palin AC, Ramachandran V, Acharya S, Lewis DB. Human neonatal naive CD4+ T cells have enhanced activation-dependent signaling regulated by the microRNA miR-181a. J Immunol. Mar 15 2013;190(6):2682-91. doi:10.4049/jimmunol.1202534
54. Hogan PG. Calcium-NFAT transcriptional signalling in T cell activation and T cell exhaustion. Cell Calcium. May 2017;63:66-69. doi:10.1016/j.ceca.2017.01.014
55. Martinez GJ, Pereira RM, Aijo T, et al. The transcription factor NFAT promotes exhaustion of activated CD8(+) T cells. Immunity. Feb 17 2015;42(2):265-278. doi:10.1016/j.immuni.2015.01.006
56. Labastida-Conde RG, Ramirez-Pliego O, Peleteiro-Olmedo M, et al. Flagellin is a Th1 polarizing factor for human CD4(+) T cells and induces protection in a murine neonatal vaccination model of rotavirus infection. Vaccine. Jul 5 2018;36(29):4188-4197. doi:10.1016/j.vaccine.2018.06.005
57. McCarron M, Reen DJ. Activated human neonatal CD8+ T cells are subject to immunomodulation by direct TLR2 or TLR5 stimulation. J Immunol. Jan 1 2009;182(1):55-62. doi:10.4049/jimmunol.182.1.55
58. Rodriguez-Jorge O, Kempis-Calanis LA, Abou-Jaoude W, et al. Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4(+) T cell activation. Sci Signal. Apr 16 2019;12(577)doi:10.1126/scisignal.aar3641
59. Slack M, Wang T, Wang R. T cell metabolic reprogramming and plasticity. Mol Immunol. Dec 2015;68(2 Pt C):507-12. doi:10.1016/j.molimm.2015.07.036
60. Wang R, Green DR. Metabolic reprogramming and metabolic dependency in T cells. Immunol Rev. Sep 2012;249(1):14-26. doi:10.1111/j.1600-065X.2012.01155.x
61. Yong CS, Abba Moussa D, Cretenet G, Kinet S, Dardalhon V, Taylor N. Metabolic orchestration of T lineage differentiation and function. FEBS Lett. Oct 2017;591(19):3104-3118. doi:10.1002/1873-3468.12849
62. Cluxton D, Petrasca A, Moran B, Fletcher JM. Differential Regulation of Human Treg and Th17 Cells by Fatty Acid Synthesis and Glycolysis. Front Immunol. 2019;10:115. doi:10.3389/fimmu.2019.00115
63. Shan J, Jin H, Xu Y. T Cell Metabolism: A New Perspective on Th17/Treg Cell Imbalance in Systemic Lupus Erythematosus. Front Immunol. 2020;11:1027. doi:10.3389/fimmu.2020.01027
64. Wik JA, Skalhegg BS. T Cell Metabolism in Infection. Front Immunol. 2022;13:840610. doi:10.3389/fimmu.2022.840610
65. Tabilas C, Wang J, Liu X, Locasale JW, Smith NL, Rudd BD. Cutting Edge: Elevated Glycolytic Metabolism Limits the Formation of Memory CD8(+) T Cells in Early Life. J Immunol. Nov 15 2019;203(10):2571-2576. doi:10.4049/jimmunol.1900426
66. Almeida L, Lochner M, Berod L, Sparwasser T. Metabolic pathways in T cell activation and lineage differentiation. Semin Immunol. Oct 2016;28(5):514-524. doi:10.1016/j.smim.2016.10.009
67. Chisolm DA, Weinmann AS. TCR-Signaling Events in Cellular Metabolism and Specialization. Front Immunol. 2015;6:292. doi:10.3389/fimmu.2015.00292
68. Cretenet G, Clerc I, Matias M, et al. Cell surface Glut1 levels distinguish human CD4 and CD8 T lymphocyte subsets with distinct effector functions. Sci Rep. Apr 12 2016;6:24129. doi:10.1038/srep24129
69. Lin H, Zhao Y, Zhu Y, et al. Maternal High-Fat Diet Aggravates Allergic Asthma in Offspring via Modulating CD4(+) T-Cell Differentiation. Nutrients. Jun 16 2022;14(12)doi:10.3390/nu14122508
70. Sanli E, Kabaran S. Maternal Obesity, Maternal Overnutrition and Fetal Programming: Effects of Epigenetic Mechanisms on the Development of Metabolic Disorders. Curr Genomics. Sep 2019;20(6):419-427. doi:10.2174/1389202920666191030092225