Intervening effects of progesterone combined with estradiol on streptozotocin-induced diabetes in ovariectomized mice and the underlying mechanisms

Main Article Content

Yuan Yan Jing-jing Liang Yu-dong Wang Xu-jiang Hao Yue Ma Hong-fang Li


Background: Estrogen and progesterone are closely related to the occurrence of diabetes, and the progestogenic and estrogenic effects in the development of diabetes are related to their blood levels and the organism state, and it is not clear what effect their combination will be. The present study was to investigate the interaction between estrogen and progesterone in the development of diabetes mellitus.

Methods: A model of type 1 diabetes mellitus(T1DM)was established in ovariectomized (OVX) mice by intraperitoneal injection of streptozotocin (STZ), and the levels of plasma glucose, insulin, C-peptide, progesterone, and estradiol, the changes of islet cells, the expressions of glucose transporter 4 (GLUT4), Glucokinase (Gck), Glucose-6-phosphatase (G-6-P) and phosphoenolpyruvate carboxylase (PCK) were detected after chronically injected different doses of progesterone and 17β-estradiol subcutaneously for 4 weeks.

Results: Progesterone and 17β-estradiol could delay the occurrence of T1DM induced by STZ in ovariectomized mice, but there was no dose-response relationship; progesterone (2mg/kg) and 17β-estradiol (0.1mg/kg) injected separately or jointly could make the plasma concentration of estradiol and progesterone reaches the physiological dose range, which markedly inhibited the increase of the blood glucose induced by STZ, improved the glucose tolerance, protected islet cells, promoted C-peptide and insulin secretion, up-regulated skeletal muscle GLUT4 and liver Gck expressions, but significantly down-regulated the expressions of liver PCK and G-6-P mRNA.

Conclusions: The physiological dose of progesterone combined with estradiol has certain synergistic effects in delaying the occurrence of diabetes, the mechanisms are probably related to the protection of islet cells, the promotion of insulin release, skeletal muscle glucose transport, and liver glucose metabolism.

Keywords: progesterone, estradiol, diabetes, pancreatic islet, glucose metabolism, GLUT4

Article Details

How to Cite
YAN, Yuan et al. Intervening effects of progesterone combined with estradiol on streptozotocin-induced diabetes in ovariectomized mice and the underlying mechanisms. Medical Research Archives, [S.l.], v. 12, n. 6, june 2024. ISSN 2375-1924. Available at: <>. Date accessed: 22 july 2024. doi:
Research Articles


1. Kleinberger JW, and Pollin TI. Personalized medicine in diabetes mellitus: current opportunities and future prospects. Ann N Y Acad Sci. 2015; 1346(1): 45-56. doi: 10.1111/ nyas.12757

2. Li Y, Huang J, Yan Y, Liang J, Liang Q, Lu Y, et al. Preventative effects of resveratrol and estradiol on streptozotocin-induced diabetes in ovariectomized mice and the related mechanisms. PLoS One. 2018;13(10):e020449 9. doi: 10.1371/journal.pone.0204499

3. Saadeh NA, Hammouri HM, Zahran DJ. Diabetic Ketoacidosis in Northern Jordan: Seasonal Morbidity and Characteristics of Patients. Diabetes Metab Syndr Obes. 2023; 16: 3057–3064. doi: 10.2147/DMSO.S413405

4. Elian V, Popovici V, Ozon EA, Musuc AM, Fița AC, Rusu E, et al. Current Technologies for Managing Type 1 Diabetes Mellitus and Their Impact on Quality of Life—A Narrative Review. Life (Basel) 2023;13(8): 1663. doi: 10.3390/life13081663

5. Salonia A, Lanzi R, Scavini M, Pontillo M, Gatti E, Petrella G, et al. Sexual function and endocrine profile in fertile women with type 1 diabetes. Diabetes Care. 2006; 29: 312–316.

6. Paschou SA, Athanasiadou KI, Papanas N. Menopausal Hormone Therapy in Women with Type 2 Diabetes Mellitus: An Updated Review. Diabetes Ther. 2024; 15(4): 741–748. doi: 10.1007/s13300-024-01546-1

7. Tiano JP, Mauvais-Jarvis F. Importance of oestrogen receptors to preserve functional β-cell mass in diabetes. Nat Rev Endocrinol. 2012; 8: 342–351.

8. Mauvais-Jarvis F. Role of Sex Steroids in β Cell Function, Growth, and Survival.Trends Endocrinol Metab. 2016; 27(12):844-855. doi: 10.1016/j.tem.2016.08.008

9. Taraborrelli S. Physiology, production and action of progesterone. Acta Obstetricia Et Gynecologica Scandinavica. 2015; 94 Suppl 161: 8-16. doi: 10.1111/aogs.12771

10. Millette K, Rodriguez K, Sheng X, Finley SD, Georgia S. Exogenous Lactogenic Signaling Stimulates Beta Cell Replication In Vivo and In Vitro. Biomolecules. 2022;12(2):21 5. doi: 10.3390/biom12020215

11. Pasanen S, Ylikomi T, Syvl H, Tuohimaa PJM, Endocrinology C. Distribution of progesterone receptor in chicken: novel target organs for progesterone and estrogen action. 1997; 135(1): 79-91. doi: 10.1016/s030 3-7207(97)00192-5

12. Tiano JP, Mauvais-Jarvis F. Importance of oestrogen receptors to preserve functional β-cell mass in diabetes. Nat Rev Endocrinol. 2012; 8(6): 342–351. doi: 10.1038/nrendo.2011.242

13. Wong WP, Tiano JP, Liu S, Hewitt SC, Le May C, Dalle S, et al. Extranuclear estrogen receptor-α stimulates NeuroD binding to the insulin promoter and favors insulin synthesis. Proc Natl Acad Sci USA. 2010; 107(29): 1305 7–13062. doi: 10.1073/pnas.0914501107

14. Babiloni-Chust I, Dos Santos RS, Medina-Gali RM, Perez-Serna AA, Encinar JA, Martinez-Pinna J, et al. G protein coupled estrogen receptor activation by bisphenol-A disrupts the protection from apoptosis conferred by the estrogen receptors ERalpha and ERbeta in pancreatic beta cells. Environ Int. 2022;164:107250. doi: 10.1016/j.envint.2022

15. Tiano JP, Mauvais-Jarvis F. Molecular mechanisms of estrogen receptors' suppression )of lipogenesis in pancreatic β-cells. Endocrinology. 2012; 153(7): 2997–3005. doi: 10.1210/en.2011-1980

16. Kilic G, Alvarez-Mercado AI, Zarrouki B, Opland D, Liew CW, Alonso LC, et al. The islet estrogen receptor-alpha is induced by hyperglycemia and protects against oxidative stress-induced insulin-deficient diabetes. PLoS One. 2014;9(2):e87941. doi: 10.1371/jo urnal.pone.0087941

17. Alonso-Magdalena P, Ropero AB, Carrera MP, Cederroth CR, Baquié M, Gauthier BR, et al. Pancreatic insulin content regulation by the estrogen receptor ER α. Plos One. 2008; 3(4): e2069. doi: 10.1371/journal.pone.0002069

18. Soriano S, Ropero AB, Alonso-Magdalena P, Ripoll C, Quesada I, Gassner B, et al. Rapid regulation of K(ATP) channel activity by 17β-estradiol in pancreatic β-cells involves the estrogen receptor β and the atrial natriuretic peptide receptor. Mol Endocrinol. 2009; 23(12): 1973–1982. doi: 10.1210/me.20 09-0287

19. Mauvais-Jarvis F, Le May C, Tiano JP, Liu S, Kilic-Berkmen G, Kim JH. The Role of Estrogens in Pancreatic Islet Physiopathology .Adv Exp Med Biol. 2017;1043:385-399. doi: 10.1007/978-3-319-70178-3_18

20. Lin P, Zhang X, Zhu B, Gao J, Yin D, Zeng J, et al. Naringenin protects pancreatic beta cells in diabetic rat through activation of estrogen receptor beta. Eur J Pharmacol. 2023; 960:176115. doi: 10.1016/j.ejphar.20 23.176115

21. Medina RA, Meneses AM, Vera JC, Guzman C, Nualart F, Astuya A, et al. Estrogen and progesterone up-regulate glucose transporter expression in ZR-75-1 human breast cancer cells. Endocrinology. 2003; 144(10): 4527-4535. doi: 10.1210/en.20 03-029

22. Handgraaf S, Philippe J. The Role of Sexual Hormones on the Enteroinsular Axis. Endocr Rev. 2019 Aug 1;40(4):1152-1162. doi: 10.1210/er.2019-00004

23. Picard F, Wanatabe M, Schoonjans K, Lydon J, O'Malley BW, Auwerx J. Nonlinear partial differential equations and applications: Progesterone receptor knockout mice have an improved glucose homeostasis secondary to β-cell proliferation. Proc Natl Acad Sci. 200 2;99(24):15644-15648. doi: 10.1073/pnas.202612199

24. Lee SR, Choi WY, Heo JH, Huh J, Kim G, Lee KP et al. Progesterone increases blood glucose via hepatic progesterone receptor membrane component 1 under limited or impaired action of insulin. Sci Rep. 2020;10 (1):16316. doi: 10.1038/s41598-020-73330-7

25. Masuyama H, Hiramatsu Y. Potential role of estradiol and progesterone in insulin resistance through constitutive androstane receptor. J Mol Endocrinol. 2011;47(2):229-39. doi: 10.1530/JME-11-0046.

26. Bone HG, Lindsay R, McClung MR, Perez AT, Raanan MG, Spanheimer RG. Effects of pioglitazone on bone in postmenopausal women with impaired fasting glucose or impaired glucose tolerance: a randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 2013;98(12):4691-701.

27. Furman BL. Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc. 2021;1(4):e78.

28. Yi B, Huang G, Zhou Z. Different Role of Zinc Transporter 8 between Type 1 Diabetes Mellitus and Type 2 Diabetes Mellitus. J Diabetes Investig. 2016;7(4):459-65. doi: 10.1111/jdi.12441

29. Kampmann U, Knorr S, Fuglsang J, Ovesen P. Determinants of Maternal Insulin Resistance during Pregnancy: An Updated Overview. J Diabetes Res. 2019;2019:53 20156. doi: 10.1155/2019/5320156

30. Nunes VA, Portioli-Sanches EP, Rosim MP, Araujo MS, Praxedes-Garcia P, Valle MM, et al. Progesterone induces apoptosis of insulin-secreting cells: insights into the molecular mechanism. J Endocrinol. 2014;221 (2):273-84.

31. Candolfi M, Jaita G, Zaldivar V, Zárate S, Ferrari L, Pisera D, et al. Progesterone antagonizes the permissive action of estradiol on tumor necrosis factor-a-induced apoptosis of anterior pituitary cells. Endocrinology. 2005 ;146(2):736-43. doi: 10.1210/en.2004-1276

32. Cheng X, Shimizu I, Yuan Y, Wei M, Shen M, Huang H, et al. Effects of estradiol and progesterone on tumor necrosis factor a-induced apoptosis in human hepatoma HuH-7 cells. Life Sci. 2006;79(21):1988-94.

33. Azizian H, Khaksari M, Asadikaram G, Esmailidehaj M, Shahrokhi N. Progesterone eliminates 17β-estradiol-Mediated cardioprotection against diabetic cardiovascular dysfunction in ovariectomized rats. Biomed J. 2021;44(4):46 1-470. doi: 10.1016/

34. Ordóñez P, Moreno M, Alonso A, Llaneza P, Díaz F, González C. 17beta-Estradiol and/or progesterone protect from insulin resistance in STZ-induced diabetic rats. J Steroid Biochem Mol Biol. 2008;111(3-5):287-94.

35. Merino B, García-Arévalo M. Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. Int Rev Cell Mol Biol. 2021;359:81-138.

36. Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS, et al. Estrogens protect pancreatic β-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A. 2006;103(24): 9232-7. doi: 10.1073/pnas.0602956103

37. Kahn SE, Cooper ME, Del Prato S. Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet. 2014;383(9922):1068-83. doi: 10.1016/S0140-6736(13)62154-6

38. Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia. 2015;58 (2):221-32.

39. Wright EM. Glucose transport families SLC5 and SLC50. Mol Aspects Med. 2013;34(2-3):183-96.

40. Chadt A, Al-Hasani H. Glucose transporters in adipose tissue, liver, and skeletal muscle in metabolic health and disease. Pflugers Arch. 2020;472(9):1273-1298. doi: 10.1007/s00424-020-02417-x

41. Huang CF, Yang CY, Chan DC, Wang CC, Huang KH, Wu CC, et al. Arsenic Exposure and Glucose Intolerance/Insulin Resistance in Estrogen-Deficient Female Mice. Environ Health Perspect. 2015;123(11):1138-44. doi: 10.1289/ehp.1408663

42. Seyer P, Vallois D, Poitry-Yamate C, Schütz F, Metref S, Tarussio D, et al. Hepatic glucose sensing is required to preserve P cell glucose competence. J Clin Invest. 2013;123(4):1662-76. doi: 10.1172/JCI65538

43. Rudland VL. Diagnosis and management of glucokinase monogenic diabetes in pregnancy: current perspectives. Diabetes Metab Syndr Obes. 2019;12:1081-1089. doi: 10.2147/DMSO.S186610

44. Westermeier F, Holyoak T, Asenjo JL, Gatica R, Nualart F, Burbulis I, et al. Gluconeogenic Enzymes in β-Cells: Pharmacological Targets for Improving Insulin Secretion. Trends Endocrinol Metab. 2019;30 (8):520-531.

45. Chen SH, Liu XN, Peng Y. MicroRNA-351 eases insulin resistance and liver gluconeogenesis via the PI3K/AKT pathway by inhibiting FLOT2 in mice of gestational diabetes mellitus. J Cell Mol Med. 2019;23(9): 5895-5906. doi: 10.1111/jcmm.14079

46. Azboy İ, Özkaya M, Demir T, Demirtaş A, Kağan Arslan A, Özkul E, et al. Biomechanical properties of osteoporotic rat femurs after different hormonal treatments: genistein, estradiol, and estradiol/progesterone. SICOT J. 2016;2:24. doi: 10.1051/sicotj/2016016

47. Getoff N, Schittl H, Hartmann J, Gerschpacher M, Ying S, Danielova I, et al. Mutual Interaction of 17β-Estradiol and Progesterone: Electron Emission. Free Radical Effect Studied by Experiments in vitro. In Vivo. 2010;24(4):535-41.