Brownian motion under the influence of green noise
Main Article Content
Abstract
Abstract
The motion of a Brownian particle is examined when exposed to green noise generated with a randomly localized potential function. To investigate this motion, an averaging method was developed which is valid for any intensity external noises. For the case of a limited quasi-periodic model potential, the particle trajectory implementations were numerically calculated. It is shown that introducing the effective potential in a certain manner plays a critical role when studying the possibility of a phase transition in a given system.Article Details
How to Cite
GUZ, C. A.; SVIRIDOV, M. V..
Brownian motion under the influence of green noise.
Quarterly Physics Review, [S.l.], v. 3, n. 2, july 2017.
ISSN 2572-701X.
Available at: <https://esmed.org/MRA/qpr/article/view/1326>. Date accessed: 21 dec. 2024.
Section
Articles
Copyright
Authors will be required to fill out the below copyright transfer form during the peer-review process and attach it along with their submission. In return, Knowledge Enterprises Journals grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by Knowledge Enterprises Journals.
References
References
1. Unhlenbeck G. E., Ornstein L. S., Phis. Rev. 36, 823 (1930).
2. Wang M. C., Unhlenbeck G. E., Rev. Mod. Phys. 17, 323 (1945).
3. Hayashi S., Phys. Rev. E 52, 3614 (1995).
4. Kuś M., Wajnryb E., Wodkiewicz K., Phys. Rev. A 43, 4167 (1991).
5. Dialyna T. E, Tsironis G. Phys. Lett. A 218, 292 (1996).
6. Kula J., Czernik T., Łuczka J., Phys. Lett. A 214, 14 (1996).
7. Guz S. A., Sviridov M. V., Phys. Lett. A 240, 43 (1998).
8. Guz S. A., Sviridov M. V., Chaos 11, 605 (2001).
9. Bao J.-D. Physics Letters A, 256, 356 (1999).
10. Bao J.-D., Liu S. J. Phys. Rev. E 60, 7572 (1999).
11. Mannella R., Palleschi V., Phys. Rev., 40, 3381 (1989).
12. W. H. Press, S. A. Teukolsky et al. Nu-merical Recipes in C++. Second Edi-tion. Cambridge University Press, 1992.
13. Risken H. The Fokker-Planck Equation. Second Edition. Springer, Berlin 1989.
14. Guz S. A., Journal of Experimental and Theoretical Physics, 95, 166 (2002).
1. Unhlenbeck G. E., Ornstein L. S., Phis. Rev. 36, 823 (1930).
2. Wang M. C., Unhlenbeck G. E., Rev. Mod. Phys. 17, 323 (1945).
3. Hayashi S., Phys. Rev. E 52, 3614 (1995).
4. Kuś M., Wajnryb E., Wodkiewicz K., Phys. Rev. A 43, 4167 (1991).
5. Dialyna T. E, Tsironis G. Phys. Lett. A 218, 292 (1996).
6. Kula J., Czernik T., Łuczka J., Phys. Lett. A 214, 14 (1996).
7. Guz S. A., Sviridov M. V., Phys. Lett. A 240, 43 (1998).
8. Guz S. A., Sviridov M. V., Chaos 11, 605 (2001).
9. Bao J.-D. Physics Letters A, 256, 356 (1999).
10. Bao J.-D., Liu S. J. Phys. Rev. E 60, 7572 (1999).
11. Mannella R., Palleschi V., Phys. Rev., 40, 3381 (1989).
12. W. H. Press, S. A. Teukolsky et al. Nu-merical Recipes in C++. Second Edi-tion. Cambridge University Press, 1992.
13. Risken H. The Fokker-Planck Equation. Second Edition. Springer, Berlin 1989.
14. Guz S. A., Journal of Experimental and Theoretical Physics, 95, 166 (2002).