Necessity of Direct Dose Measurement during Current X-ray Diagnosis

Main Article Content

Hiroaki Hayashi http://orcid.org/0000-0002-8836-5068 Yoshiki Mihara Yuki Kanazawa Emi Tomita Sota Goto Kazuki Takegami Tohru Okazaki Takuya Hashizume Vergil Lorenzo Estacio Cruz

Abstract

During current medical X-ray diagnosis, an automatic exposure control system is widely used. The system can provide proper X-ray exposure, which varies by the patients physical type. It is difficult to measure exposure dose using a traditional dosimeter. Therefore, we proposed using a small-type OSL dosimeter for direct dose measurements. For this application, evaluation of basic properties such as angular and energy dependences is important. Moreover, even when they are derived, some ideas to apply them to using the dosimetry is needed. In this paper, we will introduce our concept; we made a calibration curve using 83 kV X-rays and proposed that an uncertainty of 15% should be added. Moreover, when the dosimeter is applied to CT examination, consideration of pitch factor is needed. We estimated that the uncertainty of PF is at most 25%, and overall uncertainty will be approximately 30%. It is also important to determine whether or not the dosimeter influences the medical image. We presented typical X-ray images of chest X-ray and CT scan of whole body, and explain that the OSL dosimeter can be applied to actual clinical examinations.

Article Details

How to Cite
HAYASHI, Hiroaki et al. Necessity of Direct Dose Measurement during Current X-ray Diagnosis. Medical Research Archives, [S.l.], v. 5, n. 2, feb. 2017. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/1030>. Date accessed: 23 sep. 2021.
Keywords
OSL dosimeter; direct dose measurement; diagnostic X-ray; CT examination;
Section
Review Articles

References

[1] González A.B, Darby S., Risk of cancer from diagnostic X-rays: estimates for the UK and 14 other countries, The Lancet 363, 345-351(2004). Doi: 10.1016/S0140-6736(04)15433-0

[2] Uffmann M., Schaefer-Prokop C., Digital radiography: The balance between image quality and required radiation dose, European Journal of Radiology 72, 202-208(2009). Doi: 10.1016/j.ejrad.2009.05.060

[3] Use of an Automatic Exposure Control Mechanism for Dose Optimization in Multi-Detector Row CT Examinations: Clinical Evaluation, Radiology 237, 213-223(2005). Doi: 10.1148/radiol.2363041220

[4] Kalra M.K., Rizzo S.M.R., Noveline R.A., Reducing radiation dose in emergency computed tomography with automatic exposure control techniques, Emergency Radiology 11, 267-274(2005). Doi: 10.1007/s10140-004-0395-7

[5] Pascoal A., Lawinski C.P., Maxkenzie A., et al., Chest radiography: a comparison of image quality and effective dose using four digital systems, Radiation Protection Dosimetry 114, 273-277(2005). Doi: 10.1093/rpd/nch572

[6] Veldkamp W.J., Kroft L.J., Boot M.V., et al., Contrast-detail evaluation and dose assessment of eight digital chest radiography systems in clinical practice, European Radiology 16, 333-341(2006). Doi: 10.1007/s00330-005-2887-6

[7] Matsunaga U., Kawauchi A., Kobayashi K., et al., Dose Estimation for Exposure Conditions of Diagnostic Radiology Acquired by a 2011 Questionnaire in a Phantom Study, Japanese Journal of Radiological Technology 69, 1372-1378(2013). Doi: 10.6009/jjrt.2013_JSRT_69.12.1372

[8] Klevenhagen S.C., Experimentally determined backscatter factors for x-rays generated at voltages between 16 and 140 kV, Physics in Medicine and Biology 34, 1871-1882(1989). Doi: 10.1088/0031-9155/34/12/010

[9] Grosswendt B., Backscatter factors for x-rays generated at voltages between 10 and 100 kV, Physics in Medicine and Biology 29, 579-591(1984). Doi: 10.1088/0031-9155/29/5/010

[10] Grosswendt B., Dependence of the photon backscatter factor for water on source-to-phantom distance and irradiation field size. Physics in Medicine and Biology 35, 1233-1245(1990). Doi: 10.1088/0031-9155/35/9/004

[11] Kato H., Method of calculating the backscatter factor for diagnostic X-rays using the differential backscatter factor, Japanese Journal of Radiological Technology 57, 1503-1510(2001).

[12] Jursinic P.A., Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements, Medical Physics 34, 4594-4604(2007). Doi: 10.1118/1.2804555

[13] Al-Senan R.M., Hatab M.R., Characteristics of an OSLD in the diagnostic energy range, Medical Physics 38, 4396-4405(2011). Doi: 10.1118/1.3602456

[14] Hayashi H., Nakagawa K., Okino H., et al., High accuracy measurements by consecutive readings of OSL dosimeter, Medical Imaging and Information Science 31, 28-34(2014). Doi: 10.11318/mii.31.28

[15] Nakagawa K., Hayashi H., Okino H., et al., Fabrication of Annealing Equipment for Optically Stimulated Luminescence (OSL) Dosimeter, Japanese Journal of Radiological Technology 70, 1135-1142(2014). Doi: 10.6009/jjrt.2014_JSRT_70.10.1135

[16] Kerns J.R., Kry S.F., Sahoo N., et al., Angular dependence of the nanoDot OSL dosimeter, Medical Physics 38, 3955-3962(2011). Doi: 10.1118/1.3596533

[17] Lehmann J., Dunn L., Lye J.E., et al., Angular dependence of the response of the nanoDot OSLD system for measurements at depth in clinical megavoltage beams, Medical Physics 41, 061712-1-9(2014). Doi: 10.1118/1.4875698

[18] Jursinic P.A., Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries, Medical Physics 42, 5633-5641(2015). Doi: 10.1118/1.4929558

[19] Hayashi H., Takegami K., Okino H., et al., Procedure to measure angular dependences of personal dosimeters by means of diagnostic X-ray equipment, Medical Imaging and Information Science 32, 8-14(2015). Doi: 10.11318/mii.32.8

[20] Reft C.S., The energy dependence and dose response of a commercial optically stimulated luminescent detector for kilovoltage photon, megavoltage photon, and electron, proton, and carbon beams, Medical Physics 36, 1690-1699(2009). Doi: 10.1118/1.3097283

[21] Takegami K., Hayashi H., Okino H., et al., Energy dependence measurement of small-type optically stimulated luminescence (OSL) dosimeter by means of characteristic X-rays induced with general diagnostic X-ray equipment, Radiological Physics and Technology 9, 99-108(2016). Doi: 10.1007/s12194-015-0339-9

[22] Gasparian P.B.R., Vanhavere F., Yukihara E.G., Evaluating the influence of experimental conditions on the photon energy response of Al2O3:C optically stimulated luminescence detectors, Radiation Measurements 47, 243-249(2012). Doi: 10.1016/j.radmeas.2012.01.012

[23] Okazaki T., Hayashi H., Takegami K., et al., Fundamental Study of nanoDot OSL Dosimeters for Entrance Skin Dose Measurement in Diagnostic X-ray Examinations, Journal of Radiation Protection and Research 41, 229-236(2016). Doi: 10.14407/jrpr.2016.41.3.229

[24] Takegami K., Hayashi H., Okino H., et al., Practical calibration curve of small-type optically stimulated luminescence (OSL) dosimeter for evaluation of entrance skin dose in the diagnostic X-ray region, Radiological Physics and Technology 8, 286-294(2015). Doi: 10.1007/s12194-015-0318-1

[25] Takegami K., Hayashi H., Yamada K., et al., Entrance surface dose measurements using a small OSL dosimeter with a computed tomography scanner having 320 rows of detectors, Radiological Physics and Technology, in press. Doi: 10.1007/s12194-016-0366-1

[26] Tappouni R., Mathers B., Scan Quality and Entrance Skin Dose in Thoracic CT: A Comparison between Bismuth Breast Shield and Posteriorly Centered Partial CT Scans, ISRN Radiology 2013, 457396-1-6(2013). Doi: 10.5402/2013/457396

[27] Chetlen A.L., Brown K.L., King S.H., et al., Scatter Radiation Dose From Digital Screening Mammography Measured in a Representative Patient Population, American Journal of Roentgenology 206, 359-365(2016). Doi: 10.2214/AJR.15.14921

[28] Okazaki T., Hayashi H., Okino H., et al., Calculation of energy and angular dependences of the small-type OSL dosimeter in the diagnostic and nuclear medicine regions using the Monte-Carlo simulation code, International Conference on Medical Physics (ICMP2016), Thailand, Dec. 9-12 (2016).

[29] Ariga E., Ito S. Deji S. et al., Determination of half value layers of X-ray equipment using computed ragiography imaging plates, Physica Medica 28, 71-75(2012). Doi: 10.1016/j.ejmp.2011.01.001

[30] Takegami K., Hayashi H., Konishi Y., et al., Development of multistage collimator for narrow beam production using filter guides of diagnostic X-ray equipment and improvement of apparatuses for practical training, Medical Imaging and Information Sciences 30, 101-107(2013). Doi: 10.11318/mii.30.101

[31] Maehata I., Hayashi H., Kimoto N. et al., Practical method for determination of air kerma by use of an ionization chamber toward construction of a secondary X-ray field to be used in clinical examination rooms, Radiological Physics and Technology 9, 193-201(2016). Doi: 10.1007/s12194-016-0352-7

[32] Hirayama H., Namito Y., Bielajew A.F., et al., The EGS5 Code System, SLAC Report number: SLAC-R-730, KEK Report number: 2005-8. (2007).

[33] Kishida M., Hayashi H., Kuboyabu T., et al., Fabrication of a Visualization Equipment for Scattered X-rays in the Diagnosis Domain and Proposal of a Practical Training, Japanese Journal of Radiological Technology 69, 500-507(2013). Doi: 10.6009/jjrt.2013_JSRT_69.5.500

[34] Maehata I., Hayashi H., Takegami K., et al., Fabrication of Improved Multi-slit Equipment to Obtain the Input-output Characteristics of Computed Radiography Systems: Correction of the Heel Effect, and Application to High Tube-voltage Experiments, Japanese Journal of Radiological Technology 70, 867-876(2014). Doi: 10.6009/jjrt.2014_JSRT_70.9.867

[35] Kimoto N., Hayashi H., Maehata I., et al., Development of All-in-one Multi-slit Equipment for Measurements of the Input-output Characteristic of a Phosphor Plate, Japanese Journal of Radiological Technology 69, 1165-1171(2013). Doi: 10.6009/jjrt.2013_JSRT_69.10.1165

[36] Takegami K., Hayashi H., Okino H., et al., Estimation of identification limit for a small-type OSL dosimeter on the medical images by measurement of X-ray spectra, Radiological Physics and Technology 9, 286-292(2016). Doi: 10.1007/s12194-016-0362-5