The Association between Oxygen Consumption of the Liver Graft and Post-transplant Outcome.
Main Article Content
Abstract
The association between oxygen consumption of the liver graft after reperfusion and post-transplant outcome has been studied from 1950s. The lack of significant progress is because oxygen consumption of the liver graft is determined by various factors, including the donor condition, status of the graft preservation, cold ischemia time, and hepatic blood flow after reperfusion. However, metabolic alterations, such as oxygen consumption and glucose metabolism in the liver grafts are reliable predictors of subsequent the liver graft function, and may help the decision of re-transplantation for the patients with failed liver graft. Appropriate organ preservation reduces oxygen consumption of the liver grafts, and low oxygen consumption might reflect less histological damage after preservation and reperfusion. In contrast, systemic oxygen consumption after reperfusion in patients with successful liver transplantation was higher than systemic oxygen consumption in those with primary non-function and graft dysfunction. This review summarizes association between oxygen consumption of the liver graft and post-transplant outcome.
Article Details
How to Cite
SHIBA, Hiroaki; KELLY, Dympna M; KELLY, Dympna M.
The Association between Oxygen Consumption of the Liver Graft and Post-transplant Outcome..
Medical Research Archives, [S.l.], v. 5, n. 6, june 2017.
ISSN 2375-1924.
Available at: <https://esmed.org/MRA/mra/article/view/1302>. Date accessed: 15 jan. 2025.
Keywords
Liver transplantation; Oxygen consumption
Section
Review Articles
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
1. Taniguchi M. Liver transplantation in the MELD era--analysis of the OPTN/UNOS registry. Clin Transpl 2012: 41-65.
2. Kemmer N, Secic M, Zacharias V, Kaiser T, Neff GW. Long-term analysis of primary nonfunction in liver transplant recipients. Transplant Proc 2007; 39: 1477-80.
3. Uemura T, Randall HB, Sanchez EQ, Ikegami T, Narasimhan G, McKenna GJ, et al. Liver retransplantation for primary nonfunction: analysis of a 20-year single-center experience. Liver Transpl 2007; 13: 227-33.
4. Vitale A, D'Amico F, Gringeri E, Valmasoni M, Pauletto A, Bonsignore P, et al. Prognostic evaluation of the donor risk index among a prospective cohort of Italian patients undergoing liver transplantation. Transplant Proc. 2009; 41: 1096-8.
5. Ploeg RJ, D'Alessandro AM, Knechtle SJ, Stegall MD, Pirsch JD, Hoffmann RM, et al. Risk factors for primary dysfunction after liver transplantation--a multivariate analysis. Transplantation. 1993; 55: 807-13.
6. Svensson KL, Persson H, Henriksson BA, Karlberg I, Sonander H, Lundholm K, et al. Whole body gas exchange: amino acid and lactate clearance as indicators of initial and early allograft viability in liver transplantation. Surgery. 1989; 105(4): 472-80.
7. Mallett SV, Kang Y, Freeman JA, Aggarwal S, Gasior T, Fortunato FL. Prognostic significance of reperfusion hyperglycemia during liver transplantation. Anesth Analg. 1989; 68(2): 182-5.
8. Steltzer H, Tüchy G, Hiesmayr M, Müller C, Germann P, Zimpfer M. Peri-operative liver graft function: monitoring using the relationship between blood glucose and oxygen consumption during anaesthesia. Anaesthesia. 1992; 47(11): 955-8.
9. Shiba H, Zhu X, Arakawa Y, Irefin S, Wang B, Trenti L, et al. Glucose balance of porcine liver allograft is an important predictor of outcome. J Surg Res 2011: 171; 851-8.
10. Lanir A, Jenkins RL, Caldwell C, Lee RG, Khettry U, Clouse ME. Hepatic transplantation survival: correlation with adenine nucleotide level in donor liver. Hepatology 1988; 8: 471-5.
11. Sumimoto K, Inagaki K, Yamada K, Kawasaki T, Dohi K. Reliable indices for the determination of viability of grafted liver immediately after orthotopic transplantation. Bile flow rate and cellular adenosine triphosphate level. Transplantation 1988; 46: 506-9.
12. Kelly DM, Demetris AJ, Fung JJ, Marcos A, Zhu Y, Subbotin V, et al. Porcine partial liver transplantation: a novel model of the "small-for-size" liver graft. Liver Transpl 2004; 10: 253-63.
13. Kelly DM, Zhu X, Shiba H, Irefin S, Trenti L, Cocieru A, et al. Adenosine restores the hepatic artery buffer response and improves survival in a porcine model of small-for-size syndrome. Liver Transpl. 2009; 15: 1448-57.
14. Shiba H, Zhu X, Arakawa Y, Irefin S, Wang B, Trenti L, et al. Oxygen consumption predicts outcome in porcine partial liver grafts. J Surg Res. 2014; 189(2): 335-9.
15. Ardizzone G, Andorno E, Demartini M, Centenaro M, Pellizzari A, Panaro F, et al. Portal vein pressure and graft oxygen consumption monitoring during liver transplantation. Transplant Proc 2003; 35: 3015-8
16. Nagano K, Gelman S, Parks DA, Bradley EL Jr. Hepatic oxygen supply-uptake relationship and metabolism during anesthesia in miniature pigs. Anesthesiology. 1990; 72(5): 902-10.
17. Groh J, Welte M, Gerhard B, Haller M, Jauch KW, Anthuber M, et al. Value of total body oxygen consumption as a parameter of graft function after liver transplantation. Transplant Proc 1992; 24: 2696-8.
18. Van Thiel DH, Tarter R, Stone BG. Pathophysiology of liver disease in hepatic transplantation – anesthetic and perioperative management, Winter PM, Kang YG eds., p 19, Praeger, New York, Westport, London, 1986.
19. Siriussawakul A, Zaky A, Lang JD. Role of nitric oxide in hepatic ischemia-reperfusion injury. World J Gastroenterol. 2010; 16(48): 6079-86.
20. Meszaros K, Bojta J, Bautista AP, Lang CH, Spitzer JJ. Glucose utilization by Kupffer cells, endothelial cells, and granulocytes in endotoxemic rat liver. Am J Physiol 1991; 260: G7-G12.
21. Jaeschke H, Bautista AP, Spolarics Z, Spitzer JJ. Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic Res Commun. 1991; 15(5): 277-84.
22. Lemasters JJ, Thurman RG. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol 1997; 37: 327-38.
23. Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation. 1988; 45(4): 673-6.
24. Mischinger HJ, Walsh TR, Liu T, Rao PN, Rubin R, Nakamura K, Todo S, Starzl TE. An improved technique for isolated perfusion of rat livers and an evaluation of perfusates. J Surg Res. 1992; 53(2): 158-65.
25. Nagano K, Gelman S, Bradley EL Jr, Parks D. Hypothermia, hepatic oxygen supply-demand, and ischemia-reperfusion injury in pigs. Am J Physiol. 1990; 258(6 Pt 1): G910-8.
26. Fujita S, Hamamoto I, Nakamura K, Tanaka K, Ozawa K. Isolated perfusion of rat livers: effect of temperature on O2 consumption, enzyme release, energy store, and morphology. Nihon Geka Hokan. 1993; 62(2): 58-70.
27. Fuhrman FA, Field J. Factors determining the metabolic rate of excised liver tissue. Arch Biochem 1945; 6: 337-49.
28. Steltzer H, Hiesmayr M, Tüchy G, Zimpfer M. Perioperative liver graft function: the role of oxygen transport and utilization. Anesth Analg. 1993; 76(3): 574-9.
29. Shoemaker WC, Appel PL, Kram HB. Incidence, physiologic description, compensatory mechanisms, and therapeutic implications of monitored events. Crit Care Med. 1989; 17(12): 1277-85.
30. Edwards JD. Practical application of oxygen transport principles. Crit Care Med. 1990; 18(1 Pt 2): S45-8.
31. Shibutani K, Komatsu T, Kubal K, Sanchala V, Kumar V, Bizzarri DV. Critical level of oxygen delivery in anesthetized man. Crit Care Med. 1983; 11(8): 640-3.
32. Buran MJ. Oxygen consumption. In: Snyder JV, Pinsky MR, eds. Oxygen transport in the critically ill. Chicago: Year Book Medical Publishers, 1987: 16-8.
33. Lautt WW. Intrinsic regulation of hepatic blood flow. Can J Physiol Pharmacol. 1996; 74: 223-33.
34. Wanless I. Physio-anatomic considerations. In: Schiff ER, Sorrell MF, Maddrey WC, eds. Diseases of the Liver. 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 1999.
35. Ternberg JL, Butcher HR Jr. Blood-flow relation between hepatic artery and portal vein. Science. 1965; 150(3699): 1030-1.
36. Richter S, Mücke I, Menger MD, Vollmar B. Impact of intrinsic blood flow regulation in cirrhosis: maintenance of hepatic arterial buffer response. Am J Physiol Gastrointest Liver Physiol. 2000; 279(2): G454-62.
37. Zhu X, Shiba H, Zhu Y, Quintini C, Eghtesad B, Miller C, et al. Adenosine increases hepatic artery flow in liver transplant recipients: a pilot study. Transplant Proc. 2016; 48(1): 116-9.
38. Zhu X, Shiba H, Fung JJ, Wang LF, Arakawa Y, Irefin S, et al. The role of the A2a receptor agonist, regadenoson, in modulating hepatic artery flow in the porcine small-for-size liver graft. J Surg Res. 2012; 174(1): e37-45.
39. Zhu X, Fung JJ, Nakagawa S, Wang LF, Irefin S, Cocieru A, et al. Elevated catecholamines and hepatic artery vasospasm in porcine small-for-size liver graft. J Surg Res. 2012; 174(1): 157-65.
40. Takaya S, Nonami T, Selby R, Doyle H, Murray G, Kramer D, et al. The relationship of systemic hemodynamics and oxygen consumption to early allograft failure after liver transplantation. Transpl Int 1993; 6: 73-6.
41. Gubernatis G, Bornscheuer A, Taki Y, Farle M, Lübbe N, Yamaoka Y, et al. Total oxygen consumption, ketone body ratio and a special score as early indicators of irreversible liver allograft dysfunction. Transplant Proc 1989; 21: 2279-81.
42. Svensson KL, Sonander HG, Henriksson BA, Stenqvist O. Whole-body oxygen consumption during liver transplantation. Transplant Proc 1987; 19: 56-8.
43. Nonami T, Asahi K, Harada A, Nakao A, Takagi H. Effect of hyperdynamiccirculatory support on hepatic hemodynamics, oxygen supply and demand aftermassive hepatectomy. Surgery. 1991; 109(3 Pt 1): 277-83.
44. Siegel JH, Goldwyn RM, Farrell EJ, Gallin P, Friedman HP. Hyperdynamic states and the physiologic determinants of survival in patients with cirrhosis and portal hypertension. Arch Surg. 1974; 108(3): 282-92.
45. Bland RD, Shoemaker WC. Common physiologic patterns in general surgical patients: hemodynamic and oxygen transport changes during and after operation in patients with and without associated medical problems. Surg Clin North Am. 1985; 65(4): 793-809.
46. Heughan C, Ninikoski J, Hunt TK. Effect of excessive infusion of saline solution on tissue oxygen transport. Surg Gynecol Obstet. 1972; 135(2): 257-60.
47. Payen DM, Fratacci MD, Dupuy P, Gatecel C, Vigouroux C, Ozier Y, et al. Portal and hepatic arterial blood flow measurements of human transplanted liver by implanted Doppler probes: interest for early complications and nutrition. Surgery. 1990; 107(4): 417-27.
48. Margarit C, Lázaro JL, Charco R, Hidalgo E, Mora A, Bilbao I, et al. Diminished portal and total hepatic blood flows after liver graft revascularization predicts severity of ischemic lesion. Transplant Proc. 1999; 31(1-2): 444.
49. Tallgren M, Mäkisalo H, Höckerstedt K, Lindgren L. Hepatic and splanchnic oxygenation during liver transplantation. Crit Care Med. 1999; 27(11): 2383-8.
50. Lautt WW. Control of hepatic and intestinal blood flow: effect of isovolaemic haemodilution on blood flow and oxygen uptake in the intact liver and intestines. J Physiol. 1977; 265(2): 313-26.
2. Kemmer N, Secic M, Zacharias V, Kaiser T, Neff GW. Long-term analysis of primary nonfunction in liver transplant recipients. Transplant Proc 2007; 39: 1477-80.
3. Uemura T, Randall HB, Sanchez EQ, Ikegami T, Narasimhan G, McKenna GJ, et al. Liver retransplantation for primary nonfunction: analysis of a 20-year single-center experience. Liver Transpl 2007; 13: 227-33.
4. Vitale A, D'Amico F, Gringeri E, Valmasoni M, Pauletto A, Bonsignore P, et al. Prognostic evaluation of the donor risk index among a prospective cohort of Italian patients undergoing liver transplantation. Transplant Proc. 2009; 41: 1096-8.
5. Ploeg RJ, D'Alessandro AM, Knechtle SJ, Stegall MD, Pirsch JD, Hoffmann RM, et al. Risk factors for primary dysfunction after liver transplantation--a multivariate analysis. Transplantation. 1993; 55: 807-13.
6. Svensson KL, Persson H, Henriksson BA, Karlberg I, Sonander H, Lundholm K, et al. Whole body gas exchange: amino acid and lactate clearance as indicators of initial and early allograft viability in liver transplantation. Surgery. 1989; 105(4): 472-80.
7. Mallett SV, Kang Y, Freeman JA, Aggarwal S, Gasior T, Fortunato FL. Prognostic significance of reperfusion hyperglycemia during liver transplantation. Anesth Analg. 1989; 68(2): 182-5.
8. Steltzer H, Tüchy G, Hiesmayr M, Müller C, Germann P, Zimpfer M. Peri-operative liver graft function: monitoring using the relationship between blood glucose and oxygen consumption during anaesthesia. Anaesthesia. 1992; 47(11): 955-8.
9. Shiba H, Zhu X, Arakawa Y, Irefin S, Wang B, Trenti L, et al. Glucose balance of porcine liver allograft is an important predictor of outcome. J Surg Res 2011: 171; 851-8.
10. Lanir A, Jenkins RL, Caldwell C, Lee RG, Khettry U, Clouse ME. Hepatic transplantation survival: correlation with adenine nucleotide level in donor liver. Hepatology 1988; 8: 471-5.
11. Sumimoto K, Inagaki K, Yamada K, Kawasaki T, Dohi K. Reliable indices for the determination of viability of grafted liver immediately after orthotopic transplantation. Bile flow rate and cellular adenosine triphosphate level. Transplantation 1988; 46: 506-9.
12. Kelly DM, Demetris AJ, Fung JJ, Marcos A, Zhu Y, Subbotin V, et al. Porcine partial liver transplantation: a novel model of the "small-for-size" liver graft. Liver Transpl 2004; 10: 253-63.
13. Kelly DM, Zhu X, Shiba H, Irefin S, Trenti L, Cocieru A, et al. Adenosine restores the hepatic artery buffer response and improves survival in a porcine model of small-for-size syndrome. Liver Transpl. 2009; 15: 1448-57.
14. Shiba H, Zhu X, Arakawa Y, Irefin S, Wang B, Trenti L, et al. Oxygen consumption predicts outcome in porcine partial liver grafts. J Surg Res. 2014; 189(2): 335-9.
15. Ardizzone G, Andorno E, Demartini M, Centenaro M, Pellizzari A, Panaro F, et al. Portal vein pressure and graft oxygen consumption monitoring during liver transplantation. Transplant Proc 2003; 35: 3015-8
16. Nagano K, Gelman S, Parks DA, Bradley EL Jr. Hepatic oxygen supply-uptake relationship and metabolism during anesthesia in miniature pigs. Anesthesiology. 1990; 72(5): 902-10.
17. Groh J, Welte M, Gerhard B, Haller M, Jauch KW, Anthuber M, et al. Value of total body oxygen consumption as a parameter of graft function after liver transplantation. Transplant Proc 1992; 24: 2696-8.
18. Van Thiel DH, Tarter R, Stone BG. Pathophysiology of liver disease in hepatic transplantation – anesthetic and perioperative management, Winter PM, Kang YG eds., p 19, Praeger, New York, Westport, London, 1986.
19. Siriussawakul A, Zaky A, Lang JD. Role of nitric oxide in hepatic ischemia-reperfusion injury. World J Gastroenterol. 2010; 16(48): 6079-86.
20. Meszaros K, Bojta J, Bautista AP, Lang CH, Spitzer JJ. Glucose utilization by Kupffer cells, endothelial cells, and granulocytes in endotoxemic rat liver. Am J Physiol 1991; 260: G7-G12.
21. Jaeschke H, Bautista AP, Spolarics Z, Spitzer JJ. Superoxide generation by Kupffer cells and priming of neutrophils during reperfusion after hepatic ischemia. Free Radic Res Commun. 1991; 15(5): 277-84.
22. Lemasters JJ, Thurman RG. Reperfusion injury after liver preservation for transplantation. Annu Rev Pharmacol Toxicol 1997; 37: 327-38.
23. Belzer FO, Southard JH. Principles of solid-organ preservation by cold storage. Transplantation. 1988; 45(4): 673-6.
24. Mischinger HJ, Walsh TR, Liu T, Rao PN, Rubin R, Nakamura K, Todo S, Starzl TE. An improved technique for isolated perfusion of rat livers and an evaluation of perfusates. J Surg Res. 1992; 53(2): 158-65.
25. Nagano K, Gelman S, Bradley EL Jr, Parks D. Hypothermia, hepatic oxygen supply-demand, and ischemia-reperfusion injury in pigs. Am J Physiol. 1990; 258(6 Pt 1): G910-8.
26. Fujita S, Hamamoto I, Nakamura K, Tanaka K, Ozawa K. Isolated perfusion of rat livers: effect of temperature on O2 consumption, enzyme release, energy store, and morphology. Nihon Geka Hokan. 1993; 62(2): 58-70.
27. Fuhrman FA, Field J. Factors determining the metabolic rate of excised liver tissue. Arch Biochem 1945; 6: 337-49.
28. Steltzer H, Hiesmayr M, Tüchy G, Zimpfer M. Perioperative liver graft function: the role of oxygen transport and utilization. Anesth Analg. 1993; 76(3): 574-9.
29. Shoemaker WC, Appel PL, Kram HB. Incidence, physiologic description, compensatory mechanisms, and therapeutic implications of monitored events. Crit Care Med. 1989; 17(12): 1277-85.
30. Edwards JD. Practical application of oxygen transport principles. Crit Care Med. 1990; 18(1 Pt 2): S45-8.
31. Shibutani K, Komatsu T, Kubal K, Sanchala V, Kumar V, Bizzarri DV. Critical level of oxygen delivery in anesthetized man. Crit Care Med. 1983; 11(8): 640-3.
32. Buran MJ. Oxygen consumption. In: Snyder JV, Pinsky MR, eds. Oxygen transport in the critically ill. Chicago: Year Book Medical Publishers, 1987: 16-8.
33. Lautt WW. Intrinsic regulation of hepatic blood flow. Can J Physiol Pharmacol. 1996; 74: 223-33.
34. Wanless I. Physio-anatomic considerations. In: Schiff ER, Sorrell MF, Maddrey WC, eds. Diseases of the Liver. 8th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 1999.
35. Ternberg JL, Butcher HR Jr. Blood-flow relation between hepatic artery and portal vein. Science. 1965; 150(3699): 1030-1.
36. Richter S, Mücke I, Menger MD, Vollmar B. Impact of intrinsic blood flow regulation in cirrhosis: maintenance of hepatic arterial buffer response. Am J Physiol Gastrointest Liver Physiol. 2000; 279(2): G454-62.
37. Zhu X, Shiba H, Zhu Y, Quintini C, Eghtesad B, Miller C, et al. Adenosine increases hepatic artery flow in liver transplant recipients: a pilot study. Transplant Proc. 2016; 48(1): 116-9.
38. Zhu X, Shiba H, Fung JJ, Wang LF, Arakawa Y, Irefin S, et al. The role of the A2a receptor agonist, regadenoson, in modulating hepatic artery flow in the porcine small-for-size liver graft. J Surg Res. 2012; 174(1): e37-45.
39. Zhu X, Fung JJ, Nakagawa S, Wang LF, Irefin S, Cocieru A, et al. Elevated catecholamines and hepatic artery vasospasm in porcine small-for-size liver graft. J Surg Res. 2012; 174(1): 157-65.
40. Takaya S, Nonami T, Selby R, Doyle H, Murray G, Kramer D, et al. The relationship of systemic hemodynamics and oxygen consumption to early allograft failure after liver transplantation. Transpl Int 1993; 6: 73-6.
41. Gubernatis G, Bornscheuer A, Taki Y, Farle M, Lübbe N, Yamaoka Y, et al. Total oxygen consumption, ketone body ratio and a special score as early indicators of irreversible liver allograft dysfunction. Transplant Proc 1989; 21: 2279-81.
42. Svensson KL, Sonander HG, Henriksson BA, Stenqvist O. Whole-body oxygen consumption during liver transplantation. Transplant Proc 1987; 19: 56-8.
43. Nonami T, Asahi K, Harada A, Nakao A, Takagi H. Effect of hyperdynamiccirculatory support on hepatic hemodynamics, oxygen supply and demand aftermassive hepatectomy. Surgery. 1991; 109(3 Pt 1): 277-83.
44. Siegel JH, Goldwyn RM, Farrell EJ, Gallin P, Friedman HP. Hyperdynamic states and the physiologic determinants of survival in patients with cirrhosis and portal hypertension. Arch Surg. 1974; 108(3): 282-92.
45. Bland RD, Shoemaker WC. Common physiologic patterns in general surgical patients: hemodynamic and oxygen transport changes during and after operation in patients with and without associated medical problems. Surg Clin North Am. 1985; 65(4): 793-809.
46. Heughan C, Ninikoski J, Hunt TK. Effect of excessive infusion of saline solution on tissue oxygen transport. Surg Gynecol Obstet. 1972; 135(2): 257-60.
47. Payen DM, Fratacci MD, Dupuy P, Gatecel C, Vigouroux C, Ozier Y, et al. Portal and hepatic arterial blood flow measurements of human transplanted liver by implanted Doppler probes: interest for early complications and nutrition. Surgery. 1990; 107(4): 417-27.
48. Margarit C, Lázaro JL, Charco R, Hidalgo E, Mora A, Bilbao I, et al. Diminished portal and total hepatic blood flows after liver graft revascularization predicts severity of ischemic lesion. Transplant Proc. 1999; 31(1-2): 444.
49. Tallgren M, Mäkisalo H, Höckerstedt K, Lindgren L. Hepatic and splanchnic oxygenation during liver transplantation. Crit Care Med. 1999; 27(11): 2383-8.
50. Lautt WW. Control of hepatic and intestinal blood flow: effect of isovolaemic haemodilution on blood flow and oxygen uptake in the intact liver and intestines. J Physiol. 1977; 265(2): 313-26.