Fibrocytes in the cochlea of the mammalian inner ear: their molecular architecture, physiological properties, and pathological relevance

Main Article Content

Takamasa Yoshida Seishiro Sawamura Takeru Ota Taiga Higuchi Genki Ogata Karin Hori Nakagawa Takashi Katsumi Doi Mitsuo P Sato Yoriko Nonomura Arata Horii Sugata Takahashi Shizuo Komune Fumiaki Nin Hiroshi Hibino


Fibroblasts are a cell type that dominates connective tissues in a broad array of organs and plays key roles in formation of the extracellular matrix and wound healing. The cochlea of the mammalian inner ear harbors loose connective tissues such as the spiral ligament and spiral limbus, and their cellular components are called “fibrocytes.” The fibrocytes in the ligament are functionally differentiated and specialized for ion transport that is essential for proper actions of the cochlea. Molecular biological and histological assays have shown that these cells express specific types of ion channels and transporters. Results of in vivo electrophysiological experiments have integrated activities of individual channels and transporters into the ionic flow that circulates throughout the organ and maintains the electrochemical properties in various tissues and extracellular fluids. Moreover, analyses of deafness genes in humans as well as transgenic experiments on mice recently revealed the relevance of fibrocyte dysfunction to hearing disorders. In this review article, we not only describe molecular architecture and physiological and pathological significance of cochlear fibrocytes but also provide insights into next-generation therapies targeting these cells.

Article Details

How to Cite
YOSHIDA, Takamasa et al. Fibrocytes in the cochlea of the mammalian inner ear: their molecular architecture, physiological properties, and pathological relevance. Medical Research Archives, [S.l.], v. 5, n. 6, june 2017. ISSN 2375-1924. Available at: <>. Date accessed: 20 july 2024. doi:
cochlea, fibrocyte, hearing
Review Articles


1. Porter KR. Cell Fine Structure and Biosynthesis of Intercellular Macromolecules. Biophys J. 1964;4(1 Pt 2):167-196.

2. Boyle J. Molecular biology of the cell, by b. alberts, a. johnson, j. lewis, m. raff, k. roberts, and p. walter. Wiley Online Library; 2008.

3. Silzle T, Randolph GJ, Kreutz M, Kunz-Schughart LA. The fibroblast: sentinel cell and local immune modulator in tumor tissue. International journal of cancer. 2004;108(2):173-180.

4. Mihatsch-Konz B, Schaumburg-Lever G, Lever WF. Ultrastructure of dermatofibroma. Arch Dermatol Forsch. 1973;246(3):181-192.

5. Metz CN. Fibrocytes: a unique cell population implicated in wound healing. Cell Mol Life Sci. 2003;60(7):1342-1350.

6. Bucala R, Spiegel LA, Chesney J, Hogan M. Circulating fibrocytes define a new leukocyte subpopulation that mediates tissue repair. Molecular medicine (Cambridge, Mass). 1994;1(1):71.

7. Quan TE, Cowper S, Wu S-P, Bockenstedt LK, Bucala R. Circulating fibrocytes: collagen-secreting cells of the peripheral blood. The International Journal of Biochemistry & Cell Biology. 2004;36(4):598-606.

8. Diaz-Flores L, Gutierrez R, Garcia M, et al. CD34+ stromal cells/fibroblasts/fibrocytes/telocytes as a tissue reserve and a principal source of mesenchymal cells. Location, morphology, function and role in pathology. Histol Histopathol. 2014;29(7):831-870.

9. Herzog EL, Bucala R. Fibrocytes in health and disease. Exp Hematol. 2010;38(7):548-556.

10. Keeley EC, Mehrad B, Strieter RM. Fibrocytes: Bringing new insights into mechanisms of inflammation and fibrosis. The International Journal of Biochemistry & Cell Biology. 2010;42(4):535-542.

11. Takahashi T, Kimura RS. The ultrastructure of the spiral ligament in the Rhesus monkey. Acta Otolaryngol. 1970;69(1):46-60.

12. Kimura R, Schuknecht H. The ultrastructure of the human stria vascularis. Part I. Acta Otolaryngol. 1970;69(1-6):415-427.

13. Kimura R, Schuknecht H. The ultrastructure of the human stria vascularis. Part II. Acta Otolaryngol. 1970;70(5-6):301-318.

14. Slepecky NB. Structure of the mammalian cochlea. The cochlea: Springer; 1996:44-129.

15. Kikuchi T, Adams JC, Miyabe Y, So E, Kobayashi T. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness. Med Electron Microsc. 2000;33(2):51-56.

16. Wangemann P. Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol. 2006;576(Pt 1):11-21.

17. Hibino H, Kurachi Y. Molecular and physiological bases of the K+ circulation in the mammalian inner ear. Physiology. 2006;21:336-345.

18. Davis H. Some principles of sensory receptor action. Physiol Rev. 1961;41(2):391-416.

19. Konishi T, Hamrick PE, Walsh PJ. Ion transport in guinea pig cochlea. I. Potassium and sodium transport. Acta Otolaryngol. 1978;86(1-2):22-34.

20. Kikuchi T, Kimura RS, Paul DL, Adams JC. Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol (Berl). 1995;191(2):101-118.

21. Spicer SS, Schulte BA. The fine structure of spiral ligament cells relates to ion return to the stria and varies with place-frequency. Hear Res. 1996;100(1-2):80-100.

22. Wangemann P. K+ cycling and the endocochlear potential. Hear Res. 2002;165(1-2):1-9.

23. Spicer SS, Schulte BA. Evidence for a medial K+ recycling pathway from inner hair cells. Hear Res. 1998;118(1):1-12.

24. Phippard D, Lu L, Lee D, Saunders JC, Crenshaw EB. Targeted Mutagenesis of the POU-Domain Gene Brn4/Pou3f4 Causes Developmental Defects in the Inner Ear. The Journal of Neuroscience. 1999;19(14):5980-5989.

25. Bibas A, Liang J, Michaels L, Wright A. The development of the stria vascularisin the human foetus. Clin Otolaryngol Allied Sci. 2000;25(2):126-129.

26. Trowe M-O, Maier H, Schweizer M, Kispert A. Deafness in mice lacking the T-box transcription factor Tbx18 in otic fibrocytes. Development. 2008;135(9):1725-1734.

27. Kim JH, Rodriguez-Vazquez JF, Verdugo-Lopez S, Cho KH, Murakami G, Cho BH. Early fetal development of the human cochlea. Anat Rec (Hoboken). 2011;294(6):996-1002.

28. Bohnenpoll T, Trowe M-O, Wojahn I, Taketo MM, Petry M, Kispert A. Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear. Dev Biol. 2014;391(1):54-65.

29. Spicer SS, Schulte BA. Differentiation of inner ear fibrocytes according to their ion transport related activity. Hear Res. 1991;56(1):53-64.

30. Reale E, Luciano L, Franke K, Pannese E, Wermbter G, Iurato S. Intercellular junctions in the vascular stria and spiral ligament. J Ultrastruct Res. 1975;53(3):284-297.

31. Franke K. Fine structure of the tissue lining the cochlear perilymphatic space against the bony labyrinthine capsule. Arch Otorhinolaryngol. 1979;222(3):161-167.

32. Kelly JJ, Forge A, Jagger DJ. Development of gap junctional intercellular communication within the lateral wall of the rat cochlea. Neuroscience. 2011;180:360-369.

33. Lim DJ. Surface ultrastructure of the cochlear perilymphatic space. The Journal of Laryngology & Otology. 1970;84(04):413-428.

34. Iurato S. Submicroscopic structure of the membranous labyrinth 3. The supporting structure of Corti's organ (basilar membrane, limbus spiralis and spiral ligament). Z Zellforsch Mikrosk Anat. 1962;56(1):40-96.

35. Crouch JJ, Sakaguchi N, Lytle C, Schulte BA. Immunohistochemical localization of the Na-K-Cl co-transporter (NKCC1) in the gerbil inner ear. J Histochem Cytochem. 1997;45(6):773-778.

36. Schulte BA, Adams JC. Distribution of immunoreactive Na+,K+-ATPase in gerbil cochlea. J Histochem Cytochem. 1989;37(2):127-134.

37. Nin F, Hibino H, Doi K, Suzuki T, Hisa Y, Kurachi Y. The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc Natl Acad Sci U S A. 2008;105(5):1751-1756.

38. Adachi N, Yoshida T, Nin F, et al. The mechanism underlying maintenance of the endocochlear potential by the K+ transport system in fibrocytes of the inner ear. J Physiol. 2013;591(Pt 18):4459-4472.

39. Yoshida T, Nin F, Ogata G, et al. NKCCs in the fibrocytes of the spiral ligament are silent on the unidirectional K+ transport that controls the electrochemical properties in the mammalian cochlea. Pflugers Arch. 2015;467(7):1577-1589.

40. Hibino H, Higashi‐Shingai K, Fujita A, Iwai K, Ishii M, Kurachi Y. Expression of an inwardly rectifying K+ channel, Kir5. 1, in specific types of fibrocytes in the cochlear lateral wall suggests its functional importance in the establishment of endocochlear potential. Eur J Neurosci. 2004;19(1):76-84.

41. Liang F, Niedzielski A, Schulte BA, Spicer SS, Hazen-Martin DJ, Shen Z. A voltage- and Ca2+-dependent big conductance K channel in cochlear spiral ligament fibrocytes. Pflugers Arch. 2003;445(6):683-692.

42. So E, Kikuchi T, Ishimaru K, Miyabe Y, Kobayashi T. Immunolocalization of voltage-gated potassium channel Kv3.1b subunit in the cochlea. Neuroreport. 2001;12(12):2761-2765.

43. Boettger T, Rust MB, Maier H, et al. Loss of K-Cl co-transporter KCC3 causes deafness, neurodegeneration and reduced seizure threshold. EMBO J. 2003;22(20):5422-5434.

44. Hille B. Ion channels of excitable membranes. Vol 507. 3rd ed: Sinauer, Sunderland, MA; 2001.

45. Jaye DA, Xiao Y-F, Sigg DC. Basic Cardiac Electrophysiology: Excitable Membranes. In: Sigg CD, Iaizzo AP, Xiao Y-F, He B, eds. Cardiac Electrophysiology Methods and Models. Boston, MA: Springer US; 2010:41-51.

46. Elmslie KS. Membrane Potential. eLS. Chichester: John Wiley & Sons, Ltd; 2001.

47. Ikeda K, Morizono T. Electrochemical profiles for monovalent ions in the stria vascularis: cellular model of ion transport mechanisms. Hear Res. 1989;39(3):279-286.

48. Nin F, Yoshida T, Sawamura S, et al. The unique electrical properties in an extracellular fluid of the mammalian cochlea; their functional roles, homeostatic processes, and pathological significance. Pflugers Arch - Eur J Physiol. 2016;468(10):1637-1649.

49. Yoshida T, Nin F, Murakami S, et al. The unique ion permeability profile of cochlear fibrocytes and its contribution to establishing their positive resting membrane potential. Pflugers Arch. 2016;468(9):1609-1619.

50. Kelly JJ, Forge A, Jagger DJ. Contractility in type III cochlear fibrocytes is dependent on non-muscle myosin II and intercellular gap junctional coupling. Journal of the Association for Research in Otolaryngology : JARO. 2012;13(4):473-484.

51. Dai M, Shi X. Fibro-Vascular Coupling in the Control of Cochlear Blood Flow. PLoS One. 2011;6(6):e20652.

52. Hoya N, Okamoto Y, Kamiya K, Fujii M, Matsunaga T. A novel animal model of acute cochlear mitochondrial dysfunction. Neuroreport. 2004;15(10):1597-1600.

53. Okamoto Y, Hoya N, Kamiya K, Fujii M, Ogawa K, Matsunaga T. Permanent Threshold Shift Caused by Acute Cochlear Mitochondrial Dysfunction Is Primarily Mediated by Degeneration of the Lateral Wall of the Cochlea. Audiology & Neurotology. 2005;10(4):220-233.

54. Schuknecht HF. Presbycusis. Laryngoscope. 1955;65(6):402-419.

55. Wright JL, Schuknecht HF. ATrophy of the spiral ligament. Arch Otolaryngol. 1972;96(1):16-21.

56. Schuknecht HFH. Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol. 1993;102(1):1-16.

57. Hequembourg S, Liberman MC. Spiral Ligament Pathology: A Major Aspect of Age-Related Cochlear Degeneration in C57BL/6 Mice. Journal of the Association for Research in Otolaryngology. 2001;2(2):118-129.

58. Ichimiya I, Suzuki M, Mogi G. Age-related changes in the murine cochlear lateral wall. Hear Res. 2000;139(1–2):116-122.

59. Spicer SS, Schulte BA. Spiral ligament pathology in quiet-aged gerbils. Hear Res. 2002;172(1-2):172-185.

60. Wang Y, Hirose K, Liberman MC. Dynamics of Noise-Induced Cellular Injury and Repair in the Mouse Cochlea. Journal of the Association for Research in Otolaryngology. 2002;3(3):248-268.

61. Adams JC. Immunocytochemical Traits of Type IV Fibrocytes and Their Possible Relations to Cochlear Function and Pathology. Journal of the Association for Research in Otolaryngology. 2009;10(3):369-382.

62. Hirose K, Liberman MC. Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. Journal of the Association for Research in Otolaryngology. 2003;4(3):339-352.

63. Lench N, Houseman M, Newton V, Camp GV, Mueller R. Connexin-26 mutations in sporadic non-syndromal sensorineural deafness. The Lancet. 1998;351(9100):415.

64. Pandya A, Arnos KS, Xia XJ, et al. Frequency and distribution of GJB2 (connexin 26) and GJB6 (connexin 30) mutations in a large North American repository of deaf probands. Genet Med. 2003;5(4):295-303.

65. Van Camp GS, RJH. Hereditary Hearing Loss Homepage.

66. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, et al. Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature. 1997;387(6628):80-83.

67. Denoyelle F, Weil D, Maw MA, et al. Prelingual Deafness: High Prevalence of a 30delG Mutation in the Connexin 26 Gene. Hum Mol Genet. 1997;6(12):2173-2177.

68. Gasparini P, Estivill X, Volpini V, et al. Linkage of DFNB1 to non-syndromic neurosensory autosomal-recessive deafness in Mediterranean families. Eur J Hum Genet. 1997;5(2):83-88.

69. Estivill X, Fortina P, Surrey S, et al. Connexin-26 mutations in sporadic and inherited sensorineural deafness. The Lancet. 1998;351(9100):394-398.

70. Kelley PM, Harris DJ, Comer BC, et al. Novel Mutations in the Connexin 26 Gene (GJB2) That Cause Autosomal Recessive (DFNB1) Hearing Loss. The American Journal of Human Genetics. 1998;62(4):792-799.

71. Abe S, Usami S-i, Shinkawa H, Kelley PM, Kimberling WJ. Prevalent connexin 26 gene (GJB2) mutations in Japanese. J Med Genet. 2000;37(1):41-43.

72. Grifa A, Wagner CA, D'Ambrosio L, et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus. Nat Genet. 1999;23(1):16-18.

73. Xia J-h, Liu C-y, Tang B-s, et al. Mutations in the gene encoding gap junction protein beta-3 associated with autosomal dominant hearing impairment. Nat Genet. 1998;20(4):370-373.

74. Liu XZ, Xia XJ, Adams J, et al. Mutations in GJA1 (connexin 43) are associated with non-syndromic autosomal recessive deafness. Hum Mol Genet. 2001;10(25):2945-2951.

75. del Castillo I, Villamar M, Moreno-Pelayo MA, et al. A Deletion Involving the Connexin 30 Gene in Nonsyndromic Hearing Impairment. N Engl J Med. 2002;346(4):243-249.

76. de Kok YJM, van der Maarel SM, Bitner-Glindzicz M, Huber I, et al. Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science. 1995;267(5198):685.

77. Petersen MB, Wang Q, Willems PJ. Sex-linked deafness. Clin Genet. 2008;73(1):14-23.

78. Minowa O, Ikeda K, Sugitani Y, et al. Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science. 1999;285(5432):1408-1411.

79. Ikezono T, Omori A, Ichinose S, Pawankar R, Watanabe A, Yagi T. Identification of the protein product of the Coch gene (hereditary deafness gene) as the major component of bovine inner ear protein. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2001;1535(3):258-265.

80. Robertson NG, Cremers CW, Huygen PL, et al. Cochlin immunostaining of inner ear pathologic deposits and proteomic analysis in DFNA9 deafness and vestibular dysfunction. Hum Mol Genet. 2006;15(7):1071-1085.

81. Robertson NG, Lu L, Heller S, et al. Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nat Genet. 1998;20(3):299-303.

82. Delprat B, Ruel J, Guitton MJ, et al. Deafness and Cochlear Fibrocyte Alterations in Mice Deficient for the Inner Ear Protein Otospiralin. Mol Cell Biol. 2005;25(2):847-853.

83. Lopez IA, Rosenblatt MI, Kim C, et al. Slc4a11 Gene Disruption in Mice: CELLULAR TARGETS OF SENSORINEURONAL ABNORMALITIES. J Biol Chem. 2009;284(39):26882-26896.

84. Gröger N, Fröhlich H, Maier H, et al. SLC4A11 prevents osmotic imbalance leading to corneal endothelial dystrophy, deafness, and polyuria. J Biol Chem. 2010;285(19):14467-14474.

85. Potter PK, Bowl MR, Jeyarajan P, et al. Novel gene function revealed by mouse mutagenesis screens for models of age-related disease. Nature Communications. 2016;7:12444.

86. Lang H, Schulte B, Schmiedt R. Effects of chronic furosemide treatment and age on cell division in the adult gerbil inner ear. Journal of the Association for Research in Otolaryngology. 2003;4(2):164-175.

87. Stevens SM, Xing Y, Hensley CT, Zhu J, Dubno JR, Lang H. Heptanol Application to the Mouse Round Window: A Model for Studying Cochlear Lateral Wall Regeneration. Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery. 2014;150(4):659-665.

88. Kamiya K, Fujinami Y, Hoya N, et al. Mesenchymal Stem Cell Transplantation Accelerates Hearing Recovery through the Repair of Injured Cochlear Fibrocytes. The American Journal of Pathology. 2007;171(1):214-226.

89. Lang H, Ebihara Y, Schmiedt RA, et al. Contribution of bone marrow hematopoietic stem cells to adult mouse inner ear: mesenchymal cells and fibrocytes. J Comp Neurol. 2006;496(2):187-201.

90. Gratton MA, Schulte BA, Hazen-Martin DJ. Characterization and development of an inner ear type I fibrocyte cell culture. Hear Res. 1996;99(1):71-78.