CD15+ granulocyte and CD8+ T lymphocyte based gene expression clusters for ischemic stroke detection Cellular sources of gene expression in stroke

Main Article Content

Mateusz G. Adamski Yan Li Erin Wagner Chloe Seales-Bailey Nikia Bennett Hua Yu Michael Murphy Steven A. Soper Alison E. Baird

Abstract

Using whole blood and peripheral blood mononuclear cells, microarray-derived gene expression profiles have shown promise for the detection of acute ischemic stroke. Circulating leukocytes contain multiple cellular subsets of highly specific functions that may provide more powerful and more specific stroke detection than whole blood based expression profiles. The objectives of this study were to determine the cellular sources of gene expression changes in whole blood in ischemic stroke and the utility of leukocyte subset profiles for stroke detection.  Using high-throughput reverse transcription real time PCR, the absolute expression of 41 stroke-related transcripts identified in whole blood and peripheral blood mononuclear cells was quantified in 6 major leukocyte subsets – CD15+ granulocytes, CD14+ monocytes, CD4+ T lymphocytes, CD8+ T lymphocytes, γδTCR+ cells and CD20+ B lymphocytes.  Hierarchical cluster analyses were used to identify clusters of cell subset specific gene expression patterns for ischemic stroke detection.  CD15+ granulocytes and CD8+ T lymphocytes were found to be the major sources of the expression changes in ischemic stroke, with 14 and 16 genes up-regulated respectively. None of the genes were significantly altered in CD14+ monocytes or CD20+ B lymphocytes. Multiple clusters of transcripts were identified that discriminated between ischemic stroke and control, most notably in CD15+ granulocytes (p=2.88e-5) and CD8+T lymphocytes (p=1.71e-5). A CD15+ granulocyte-derived 3 gene cluster (CA4, MMP9, NAIP) showed high accuracy for ischemic stroke detection (AUC=0.813) and was 100% sensitive in a validation cohort. We conclude that transcripts identified in microarray studies in circulating leukocytes in stroke are predominantly expressed in CD15+ granulocytes and CD8+ T lymphocytes. Leukocyte subset specific gene expression clusters show promise for ischemic stroke detection.

Keywords: qPCR, gene expression, transcript, ischemic stroke, granulocyte, lymphocyte

Article Details

How to Cite
ADAMSKI, Mateusz G. et al. CD15+ granulocyte and CD8+ T lymphocyte based gene expression clusters for ischemic stroke detection. Medical Research Archives, [S.l.], v. 5, n. 11, nov. 2017. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/1597>. Date accessed: 28 mar. 2024. doi: https://doi.org/10.18103/mra.v5i11.1597.
Section
Research Articles

References

1. Moore DF, Li H, Jeffries N, Wright V, Cooper RA Jr, Elkahloun A, Gelderman MP, Zudaire E, Blevins G, Yu H, Goldin E, Baird AE. Using peripheral blood mononuclear cells to determine a gene expression profile of acute ischemic stroke: a pilot investigation. Circulation. 2005;111(2):212–21. doi:10.1161/01.CIR.0000152105.79665.C6.
2. Tang Y, Xu H, Du X, et al. Gene expression in blood changes rapidly in neutrophils and monocytes after ischemic stroke in humans: a microarray study. J Cereb Blood Flow Metab. 2006;26(8):1089–102. doi:10.1038/sj.jcbfm.9600264.
3. Barr TL, Conley Y, Ding J, Dillman A, Warach S, Singleton A, Matarin M. Genomic biomarkers and cellular pathways of ischemic stroke by RNA gene expression profiling. Neurology. 2010;75(11):1009–14. doi:10.1212/WNL.0b013e3181f2b37f.
4. Adamski MG, Li Y, Wagner E, Yu H, Seales-Bailey C, Soper SA, Murphy M, Baird AE. Expression profile based gene clusters for ischemic stroke detection. Genomics. 2014;104(3):163–9. doi:10.1016/j.ygeno.2014.08.004.
5. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 1999 Sep;22(9):391-7. PMID: 10441299.
6. Barone FC, Hillegass LM, Price WJ, White RF, Lee EV, Feuerstein GZ, Sarau HM, Clark RK, Griswold DE. Polymorphonuclear leukocyte infiltration into cerebral focal ischemic tissue: myeloperoxidase activity assay and histologic verification. J Neurosci Res. 1991 Jul;29(3):336-45. PMID: 1656059.
7. Herz J, Sabellek P, Lane TE, Gunzer M, Hermann DM, Doeppner TR. Role of Neutrophils in Exacerbation of Brain Injury After Focal Cerebral Ischemia in Hyperlipidemic Mice. Stroke. 2015 Oct;46(10):2916-25. doi: 10.1161/STROKEAHA.115.010620. PMID:2633796.
8. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem [Internet]. 2009 [cited 2012 Oct 26];55:611–22. Available from: http://www.ncbi.nlm. nih.gov/pubmed/19246619.
9. Hatano S. Experience from a multicentre stroke register: a preliminary report. Bulletin of the World Health Organisation. 1976;54(5):541–553.
10. Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, Marsh EE. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke [Internet]. 1993;24:35–41. Available from: http://www.ncbi.nlm.nih.gov/pubmed/7678184.
11. Adamski MG, Li Y, Wagner E, Yu H, Seales-Bailey C, Soper SA, Murphy M, Baird AE. Next-generation qPCR for the high-throughput measurement of gene expression in multiple leukocyte subsets. J Biomol Screen [Internet]. 2013 [cited 2014 Feb 26];18:1008–17. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23690294.
12. Adamski MG, Gumann P, Baird AE. A Method for Quantitative Analysis of Standard and High-Throughput qPCR Expression Data Based on Input Sample Quantity. PLoS One [Internet]. 2014 [cited 2014 Aug 5];9:e103917. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25090612.
13. Kleinschnitz C, Kraft P, Dreykluft A, et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood. 2013;121(4):679–91. doi:10.1182/blood-2012-04-426734.
14. Du X, Tang Y, Xu H, . Genomic profiles for human peripheral blood T cells, B cells, natural killer cells, monLit L, Walker W, Ashwood P, Gregg JP, Sharp FRocytes, and polymorphonuclear cells: comparisons to ischemic stroke, migraine, and Tourette syndrome. Genomics. 2006;87(6):693–703. doi:10.1016/j.ygeno.2006.02.003.
15. Kassner SS, Kollmar R, Bonaterra GA, Hildebrandt W, Schwab S, Kinscherf R. The early immunological response to acute ischemic stroke: differential gene expression in subpopulations of mononuclear cells. Neuroscience. 2009;160(2):394–401. doi:10.1016/j.neuroscience.2009.02.050.
16. Justicia C, Panés J, Solé S, Cervera A, Deulofeu R, Chamorro A, Planas AM. Neutrophil infiltration increases matrix metalloproteinase-9 in the ischemic brain after occlusion/reperfusion of the middle cerebral artery in rats. J Cereb Blood Flow Metab. 2003;23(12):1430–40. doi:10.1097/01.WCB.0000090680.07515.C8.
17. Yilmaz G, Arumugam T V, Stokes KY, Granger DN. Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation. 2006; 113(17):2105–12.
18. Li G, Wang X, Huang LWang Y, Hao JJ, Ge X, Xu XY, Cytotoxic function of CD8+ T lymphocytes isolated from patients with acute severe cerebral infarction: an assessment of stroke-induced immunosuppression. BMC Immunol. 2013;14:1. doi:10.1186/1471-2172-14-1.
19. Ritzel RM, Crapser J, Patel AR, Verma R, Grenier JM, Chauhan A, Jellison ER, McCullough LD. Age-Associated Resident Memory CD8 T Cells in the Central Nervous System Are Primed To Potentiate Inflammation after Ischemic Brain Injury. J Immunol. 2016 Apr 15;196(8):3318-30. doi: 10.4049/jimmunol.1502021. Epub 2016 Mar 9. PMID:26962232.
20. Peng Z, Young B, Baird AE, Soper SA. Single-pair fluorescence resonance energy transfer analysis of mRNA transcripts for highly sensitive gene expression profiling in near real time. Anal Chem. 2013;85(16):7851–8. doi:10.1021/ac400729q.