Occupational Heat Stress, DNA damage and Heat Shock Protein - A Review

Main Article Content

Vidhya Venugopal, Prof Manikandan Krishnamoorthy, Mr Vettriselvi Venkatesan, Dr Vijayalakshmi Jaganathan, Dr Paul S.F.D, Prof

Abstract

Changing climatic scenario and raising temperature is likely to subject millions of working population across the globe to heat stress at their workplaces. Several epidemiological studies, including our own other studies, stand proof of the adverse effects of heat stress on the health of the workers.  Heat stress imposes a strain on the physiology of workers exposed to heat stress that invokes physiological responses, induces DNA damage and changes in the Heat Shock Protein (HSP) levels in the blood to protect the cells from further damage. We conducted an extensive review and examined published data linking the relationship between occupational heat stress, changes in gene expression and HSPs induced by the DNA damage.  Though the evidence for the mechanistic pathway is limited, the reviewed literature shows strong evidence for the association between occupational heat stress, DNA damage, and HSPs. We conclude that occupational heat stress is a significant risk factor and understanding the association with DNA damage will give key insights in how preventive interventions can be adapted to protect the working population from further adverse effects of occupational heat exposures.

Keywords: occupational heat stress, literature review, DNA damage, micronuclei, HSP

Article Details

How to Cite
VENUGOPAL, Vidhya et al. Occupational Heat Stress, DNA damage and Heat Shock Protein - A Review. Medical Research Archives, [S.l.], v. 6, n. 1, jan. 2018. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/1631>. Date accessed: 09 oct. 2024. doi: https://doi.org/10.18103/mra.v6i1.1631.
Section
Review Articles

References

1. Haines A and Patz JA (2004). Health effects of climate change. Jama 291(1): 99-03. DOI:10.1001/jama.291.1.99
2. Costello A, Abbas, M Allen A, Ball S, Bell S, Bellamy R, Friel, S, Patterson C (2009). Managing the health effects of climate change: lancet and University College London Institute for Global Health Commission. The Lancet 373(9676): 1693-1733. doi: 10.1016/S0140-6736(09)60935-1.
3. Kovats RS and Hajat S. (2008). Heat Stress and Public Health: A Critical Review. Annual Review of Public Health. 29: 41-55
4. Parsons K. (2003). Human thermal environment. The effects of hot, moderate and cold temperatures on human health, comfort and performance, 2nd edition, New York: CRC Press.
5. Ramsey JD, Bernard TE (2000). Heat stress. Chapter 22. In: Harris RL, editor. Patty's industrial hygiene. 5th edition. New York: John Wiley and Sons. 925–84
6. Nag PK, Nag A, Sekhar P, Shah P. (2011). Perceived heat stress and strain of workers. Asian-Pacific Newsletter on Occup Health and Safety: 18-20.
7. Dutta P and Chorsiya V. (2013). Scenario Of Climate Change And Human Health In India. International Journal of Innovative Research and Development. 2(8):157-160
8. Wesseling C, Crowe J, Hogstedt C, Jakobsson K, Lucas R, Wegman DH (2014). Resolving the enigma of the mesoamerican nephropathy: a research workshop summary Am J Kidney Dis, 63, pp. 396-404. doi: 10.1053/j.ajkd.2013.08.014
9. Arngrïmsson SÁ, Petitt DS, Stueck MG, Jorgensen DK, Cureton KJ. (2004). Cooling vest worn during active warm-up improves 5-km run performance in the heat. Journal of applied physiology 96(5): 1867-1874.
10. González A J, Crandall CG, Johnson JM (2008). The cardiovascular challenge of exercising in the heat. The Journal of physiology 586(1): 45-53 doi: 10.1113/jphysiol.2007.142158
11. Miller V, Bates G, Schneider JD, Thomsen J (2011). Self-pacing as a protective mechanism against the effects of heat stress. Annals of occupational hygiene 55(5): 548-555. doi: 10.1093/annhyg/mer012
12. Donoghue AM, Sinclair MJ, Bates GP (2000). Heat exhaustion in a deep underground metalliferous mine. Occup Environ Med. 57:165–174.
13. Occupational Hygiene edited by Gardiner K & Harrington JM. (2008) chapter 20, 3rd edition, The Thermal Environmental.
14. Kenny GP, Schissler AR, Stapleton J, Piamonte M, Binder K, Lynn A, Lan CQ, Hardcastle SG. (2011). Ice cooling vest on tolerance for exercise under uncompensable heat stress. Journal of Occupational and Environmental Hygiene, 8 (8):484–491. doi: 10.1080/15459624.2011.596043
15. Venugopal V, Rekha S, Manikandan K, Latha PK, Vennila V, Ganesan N, Kumaravel. P & Chinnadurai SJ (2016). Heat stress and inadequate sanitary facilities at workplaces–an occupational health concern for women? Glob Health Action 9(1) 31945. doi: 10.3402/gha.v9.31945.
16. Raikhel M (2012). Accuracy of noninvasive and invasive point-of-care total blood hemoglobin measurement in an outpatient setting. Postgraduate medicine. 124(4):250-255. doi: 10.3810/pgm.2012.07.2584.
17. Gopinathan P, Pichan G, Sharma V (1988). Role of dehydration in heat stress-induced variations in mental performance. Arch Environ Health. 43:15–17. doi:10.1080/00039896.1988.9934367
18. Sawka NM, Latzka WA, Montain SJ, Bruces S. Cadarette, Mafgaret A. Kolka and Richard R. Gonzalez. (2001). Physiological tolerance to uncompensable heat: intermittent exercise, field Vs laborat. U.S Army Research Institute of Environmental Medicine, Med. Sci. Sports Exerc, 33: 422-430.
19. Casa DJ, Armstrong LE, Hillman SK, Montain SJ, Reiff RV, Rich BS, Roberts WO, Stone JA. (2000). National Athletic Trainers' Association position statement: fluid replacement for athletes. Journal of athletic training. 35(2): 212
20. Aragón-Vargas LF, Moncada-Jiménez J, Hernández-Elizondo J, Barrenechea A, Monge-Alvarado M. (2009). Evaluation of pre-game hydration status, heat stress, and fluid balance during professional soccer competition in the heat. European Journal of Sport Science. 9(5): 269-76.
21. Maughan R (2003). Impact of mild dehydration on wellness and on exercise performance. Eur J Clin Nutr. 57(2):S19–23.
22. Dehghan H, Mortazavi SB, Jafari MJ (2012). The evaluation of heat stress through monitoring environmental factors and physiological responses in melting and casting industries workers. Int J Environ Health Eng. 1:21. doi: 10.4103/2277-9183.96144
23. OSHA. (1999) OSHA technical manual: Heat stress (Directive Number: TED 01-00-015). Washington, DC: Department of Labor.
24. Baker LB, Lang JA, Kenney WL (2009). Change in body mass accurately and reliably predicts change in body water after endurance exercise. European journal of applied physiology. 105(6):959-67.
25. Oppliger RA, Magnes SA, Popowski LA, Gisolfi CV (2005). Accuracy of urine specific gravity and osmolality as indicators of hydration status. Int J Sport Nutr Exerc Metab.15(3):236-51
26. Candas V, Libert JP, Beandenberger G, Sagot JC, Amoros C, Kahn JM. (1986). European Journal of Applied Physiology and Occupational Physiology. 55(2):113 -122.
27. Nag PK, Nag A, Ashtekar SP (2007). Thermal limits of men in moderate to heavy work in tropical farming. Ind Health. 45:107–17.
28. Kjellstrom T, Kovats RS, Lloyd SJ, Holt T, Tol RS (2009). The direct impact of climate change on regional labor productivity. Arch Environ Occup. Health. 64(4):217–27. doi: 10.1080/19338240903352776
29. Iguchi M, Littmann AE, Shuo-Hsiu Chang MA, Wester LA, Jane S. Knipper, Richard KS (2012). Heat Stress and Cardiovascular, Hormonal, and Heat Shock Proteins in Humans. Journal of Athletic Training, 47(2):184-190.
30. Wesseling C, Crowe J, Hogstedt C, Jakobsson K, Lucas R, Wegman DH (2014). Resolving the enigma of the mesoamerican nephropathy: a research workshop summary Am J Kidney Dis, 63, pp. 396-404. doi: 10.1053/j.ajkd.2013.08.014
31. Weiner DE, McClean MD, Kaufman JS, Brooks DR (2013). The Central American epidemic of CKD. Clin J Am Soc Nephrol. 8(3):504-11. doi: 10.2215/CJN.05050512.
32. Kew MC, Abrahams C, Seftel HC. (1970). Chronic interstitial nephritis as a consequence of heatstroke. Quarterly Journal of Medicine. 39(154):189-99.
33. Glaser J, Lemery J, Rajagopalan B, Diaz HF, García-Trabanino R, Taduri G, Madero M, Amarasinghe M, Abraham G, Anutrakulchai S, Jha V (2016). Climate change and the emergent epidemic of CKD from heat stress in rural communities: the case for heat stress nephropathy Clin J Am Soc Nephrol, 11(8):1472-83. doi: 10.2215/CJN.13841215
34. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015). Failed tubule recovery, AKI-CKD transition, and kidney disease progression J Am Soc Nephrol, 26 , pp. 1765-1776
35. Santos PU, Zanetta DM, Terra-Filho M, Burdmann EA (2015). Burnt sugarcane harvesting is associated with acute renal dysfunction. Kidney Int 87(4):792-9.doi: 10.1038/ki.2014.306.
36. Laws RL, Brooks DR, Amador JJ, Weiner DE, Kaufman JS, Ramírez-Rubio O, Riefkohl A, Scammell MK, Lopez-Pilarte D, Sanchez JM, Parikh CR. (2015). Changes in kidney function among Nicaraguan sugarcane workers. Int J Occup Environ Health, 21(3): 241-250. doi: 10.1179/2049396714Y.0000000102
37. Wimalawansa S.J (2014). Escalating chronic kidney diseases of multi-factorial origin in Sri Lanka: causes, solutions, and recommendations. Environ Health Prev Med, 19(6):375-94. doi: 10.1007/s12199-014-0395-5.
38. Athuraliya NT, Abeysekera TD, Amerasinghe PH, Kumarasiri R, Bandara P, Karunaratne U, Milton AH, Jones AL (2011). Uncertain etiologies of proteinuric-chronic kidney disease in rural Sri Lanka. Kidney Int, 80:1212-1221
39. Redmon JH, Elledge MF, Womack DS, Wickremashinghe R, Wanigasuriya KP, Peiris-John RJ, Lunyera J, Smith K, Raymer JH, Levine KE (2014). Additional perspectives on chronic kidney disease of unknown aetiology (CKDu) in Sri Lanka—lessons learned from the WHO CKDu population prevalence study. BMC Nephrology, 15:125.
doi.org/10.1186/1471-2369-15-125
40. Zhang C, Zhai S, Li X, Zhang Q, Wu L, Liu Y, Jiang C, Zhou H, Li F, Zhang S, Su G. (2014). Synergistic action by multi-targeting compounds produces a potent compound combination for human NSCLC both in vitro and in vivo. Cell Death and Disease. 5:e1138; doi:10.1038/cddis.2014.76
41. Laitano O, Kalsi KK, Pook M, Oliveira AR, González-Alonso J. (2010). Separate and combined ef Nature 362, 709 - 715 (22 April 1993); doi:10.1038/362709a0 fects of heat stress and exercise on circulatory markers of oxidative stress in euhydrated humans. European journal of applied physiology. 110(5):953-60. doi: 10.1007/s00421-010-1577-5
42. Xiao C, Chan S, Li J, Hai T (2002). “Association of HSP70 and genotoxic damage in lymphocytes of workers exposed to Coke- oven emission” Cell stress Chaperones 7 (4), 396-402.
43. Bridge MW, Weller AS, Rayson M, Jones DA. (2003). Responses to exercise in the heat related to measures of hypothalamic serotonergic and dopaminergic function. Eur J Appl Physiol. 89(5):451–459.
44. Pérez-Crespo M., Pintado B., Gutiérrez-Adán A (2008). Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Mol. Reprod. Dev. 75(1), 40–47.
45. Paul C, Teng S, and Saunders PTK (2009). A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biology of Reproduction, 80(5): 913–919. doi: 10.1095/biolreprod.108.071779
46. Carlsson AM (1983). Assessment of chronic pain, I: aspects of the reliability and validity of the visual analogue scale. Pain. 16(1):87–101.
47. Fehrenbach, E and Northoff H (2000). Free radicals, exercise, apoptosis, and heat shock proteins. Exercise immunology review. 7: 66-89.
48. Dizdaroglu M, Jaruga P, Birincioglu M, Rodriguez H. (2002). Free radical-induced damage to DNA: mechanisms and measurement. Free Radical Biology and Medicine 32(11): 1102-1115.
49. Kampinga HH, Dynlacht JR, Dikomey E (2004). Mechanism of radiosensitization by hyperthermia (43 C) as derived from studies with DNA repair defective mutant cell lines. International Journal of Hyperthermia 20(2): 131-139. doi.org/10.1080/02656730310001627713
50. Lindahl T (1993). Instability and decay of the primary structure of DNA. Nature. 362:709 - 715; doi:10.1038/362709a0
51. Berg JM, Tymoczko JL, and Stryer L (2002). Biochemistry, 5th edition. New York: W H Freeman.
52. Burczynski ME, Lin HK and Penning TM (1999). Isoform-specific Induction of a Human Aldo-Keto Reductase by Polycyclic Aromatic Hydrocarbons (PAHs), Electrophiles, and Oxidative Stress: Implications for the Alternative Pathway of PAH Activation Catalyzed by Human Dihydrodiol Dehydrogenase. Cancer Research. 59(3):607-14.
53. Thonneau P, Bujan L, Multigner L, Mieusset R. (1998). Occupational heat exposure and male fertility: a review. Human Reproduction (Oxford, England) 13.8: 2122-2125.
54. Zhu BK, and Setchell BP (2004). Effects of paternal heat stress on the in vivo development of preimplantation embryos in the mouse. Reprod Nutr Dev. 44(6): 617-629.
55. Rockett JC, Mapp FL, Garges JB, Luft JC, Mori C, Dix DJ (2001). Effects of hyperthermia on spermatogenesis, apoptosis, gene expression, and fertility in adult male mice. Biology of reproduction 65(1): 229-239.
56. Harrison RG and Weiner JS (1949). Vascular patterns of the mammalian testis and their functional significance. Journal of Experimental Biology 26(3): 304-316.
57. Ivell R. (2007). Lifestyle impact and the biology of the human scrotum. Reproductive biology and endocrinology 5(1): 15. doi: 10.1186/1477-7827-5-15
58. Mieusset R, Bujan L, Mondinat C, Mansat A, Pontonnier F, Grandjean H (1987). Association of scrotal hyperthermia with impaired spermatogenesis in infertile men. Fertility and sterility 48(6) : 1006-1011
59. Mieusset R, Bengoudifa B, Bujan L (2007). Effect of posture and clothing on scrotal temperature in fertile men. Journal of andrology. 28(1):170-5.
60. Durairajanayagam D, Agarwal A, Ong C (2015). Causes, effects and molecular mechanisms of testicular heat stress. Reproductive biomedicine online. 31;30(1):14-27.
doi: 10.1016/j.rbmo.2014.09.018
61. Purschke M, Laubach HJ, Anderson RR. (2010) Dieter Thermal Injury Causes DNA Damage and Lethality in Unheated Surrounding Cells: Active Thermal Bystander Effect. Journal of Investigative Dermatology. 130(1):86-92 doi: 10.1038/jid.2009.205.
62. Harrouk W, Codrington A, Vinson R, Robaire B, Hales BF (2000). Paternal exposure to cyclophosphamide induces DNA damage and alters the expression of DNA repair genes in the rat preimplantation embryo. Mutat Res; 461(9):229-241. doi.org/10.1016/S0921-8777(00)00053-7
63. Tramontano F, Malanga M, Farina B, Jones R, Quesada P. (2000). Heat stress reduces poly (ADPR) polymerase expression in rat testis. Molecular human reproduction 6.7: 575-581.
64. Van't Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AA, Mao M, Peterse HL, van der Kooy K. van der KK, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH. (2002). Gene expression profiling predicts clinical outcome of breast cancer. Nature.415:530-6.
65. Nezhad FS, Lavvaf A, Karimi S. (2013). Studying effect of heat stress on DNA damage exposure in sertoli cells. European Journal of Zoological Research 2(6): 70-74.
66. Feng H, Sun L, Li Y, Yang B. (1998). Study on induced mutagenesis interaction of the high temperature and/or cigarette smoke. Journal of hygiene research. 27(6):379-81.
67. Hintzsche H, Riese T, Stopper H (2012). Hyperthermia-induced micronucleus formation in a human keratinocyte cell line. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 30(738-739):71-4. doi.org/10.1016/j.mrfmmm.2012.08.004
68. Minisini MP, Kantengwa S, Polla BS, Mutat Res. (1994). DNA damage and stress protein synthesis induced by oxidative stress proceed independently in the human premonocytic line U937. 315(2):169-79.
69. Yang X, Yuan J, Sun J, Wang H, Liang H, Bai Y, Guo L, Tan H, Yang M, Wang J, Su J (2008). Association between heat-shock protein 70 gene polymorphisms and DNA damage in peripheral blood lymphocytes among coke-oven workers. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 649(1-2):221-229. DOI: 10.1016/j.mrgentox.2007.09.004
70. Kantidze OL, Velichko AK, Luzhin AV, and Razin SV, Acta Naturae (2016). Heat Stress-Induced DNA Damage. 8(2):75–78.

71. Fulda S, Gorman AM, Hori O, and Samali A (2010). Cellular Stress Responses: Cell Survival and Cell Death; International Journal of Cell Biology Vol. 2010: Article ID 214074, 23. http://dx.doi.org/10.1155/2010/214074
72. Yan YE, Zhao YQ, Wang H, Fan M (2006). Pathophysiological factors underlying heatstroke. Med Hypotheses. 67(3):609-17. doi:10.1016/j.mehy.2005.12.048
73. Lindquist S. and Craig EA. (1988). The heat-shock protein. Ann Rev Genet 22:631–677.
74. Morimoto RI, Tissie´res A, Georgo poulos (1994). Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. Vol 26.
75. Yili X, Tangchun W, Yongxing Z, Tanguay RM, Nicole L, Ye Y, Guogao Z (1997). Preliminary studies on the relationship between auto antibodies to heat stress proteins and heat injury of pilots during acute heat stress. Journal of Huazhong University of Science and Technology-Medical Sciences. 17(2): 83-85. doi.org/10.1007/BF02888240
76. Ahlgrim C, Pottgiesser T, Robinson N, Sottas PE, Ruecker G, Schumacher YO. (2010). Are 10 min of seating enough to guarantee stable haemoglobin and haematocrit readings for the athlete’s biological passport? Int J Lab Hematol. 32(5):506–511.
77. Beachy SH & Repasky EA (2011). Toward establishment of temperature thresholds for immunological impact of heat exposure in humans. Int J Hyperthermia. 27(4):344-52. doi: 10.3109/02656736.2011.562873.
78. Rowell LB. (1990). Hyperthermia: a hyperadrenergic state. Hypertension. 15(5):505–507.
79. Parsell DA and Lindquist S. (1994) Heat shock proteins and stress tolerance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
80. Marchler G, Schüller C, Adam G, Ruis H. (1993). A Saccharomyces cerevisiae UAS element controlled by protein kinase A activates transcription in response to a variety of stress conditions. The EMBO journal. 12(5): 1993-2003
81. Mager WH, De Kruijff AJ. (1995). Stress-induced transcriptional activation. Microbiological reviews. 1; 59(3):506-31.
82. Landry J, Bernier D, Chrétien P, Nicole LM, Tanguay RM, Marceau N. (1982). Synthesis and degradation of heat shock proteins during development and decay of thermotolerance. Cancer Research. 1;42(6):2457-61.
83. Li CG, Werb Z. (1982). Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci USA. 79:3218-322
84. Kregel KC (2002). Heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. Journal of Applied Physiology (1985). 92(5): 2177-86
85. Feder, ME and Hofmann GE (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual review of physiology 61(1): 243-282.
86. Hut, HM, Kampinga HH, Sibon C (2005). HSP70 protects mitotic cells against heat-induced centrosome damage and division abnormalities. Molecular biology of the cell 16(8): 3776-3785. doi: 10.1091/mbc.E05-01-0038
87. Rokutan K, Hirakawa T, Teshima S, Nakano Y, Miyoshi M, Kawai T, Konda E, Morinaga H, Nikawa T, Kishi K. (1998). Implications of heat shock/stress proteins for medicine and disease. J Med Invest. 44(3-4):137-47.
88. Thomas CE, Reed DJ. (1988). Effect of extracellular Ca++ omission on isolated hepatocytes. I. Induction of oxidative stress and cell injury. Journal of Pharmacology and Experimental Therapeutics. 245(2):493-500.
89. Lee YJ, Corry PM. (1998). Metabolic Oxidative Stress-induced HSP70 Gene Expression Is Mediated through SAPK Pathway ROLE OF Bcl-2 AND c-Jun NH2-TERMINAL KINASE. Journal of Biological Chemistry. 6;273(45):29857-63.
90. Bouchama A, Knochel JP (2002). Heat stroke. New England Journal of Medicine. 20;346(25):1978-88.
91. Young JC, Agashe VR, Siegers K, Hartl FU. (2004). Pathways of chaperone-mediated protein folding in the cytosol. Nature Reviews Molecular Cell Biology 5, 781-791. doi:10.1038/nrm1492
92. Campisi J, Leem TH, Fleshner M. Stress-induced extracellular HSP72 is a functionally significant danger signal to the immune system. Cell stress & chaperones. Jul; 8(3):272-86.
93. Jin X, Wang R, Xiao C, Cheng L, Wang F, Yang L, Feng T, Chen M, Chen S, Fu X, Deng J. (2004a) Serum and lymphocyte levels of Hsp7l in aging: a study in the normal Chinese population. Cell Stress Chaperones. 9(1):69–75. doi: 10.1379/477.1
94. Jin X, Xiao C, Tanguay RM, Yang L, Wang F, Chen M, Fu X, Wang R, Deng J, Deng Z, Zheng Y. (2004b). Correlation of lymphocyte heat shock protein 70 levels with neurologic deficits in elderly patients with cerebral infarction. The American journal of medicine. 15;117(6):406-11
95. Davies EL, Bacelar MM, Marshall MJ, Johnson E, Wardle TD, Andrew SM, Williams JH. (2006). Heat shock proteins form part of a danger signal cascade in response to lipopolysaccharide and GroEL. Clinical & Experimental Immunology. 145(1):183-189.
96. Locke M. Noble EG. Tanguay RM. Field, MR.; Ianuzzo SE. & Ianuzzo CD. (1995). Activation of heat-shock transcription factor in rat heart after heat shock and exercise. American Journal of Physiology. Cell Physiology, 268(6-1) 1387–1394.
97. Milne KJ. & Noble EG. (2002). Exercise-induced elevation of HSP70 is intensity dependent. Journal of Applied Physiology, 93(2): 561–568
98. Noble EG, Milne KJ, Melling CJ (2008). Heat shock proteins and exercise: a primer. Applied physiology, nutrition, and metabolism. 30;33(5):1050-75. doi.org/10.1139/H08-069.
99. Currie RW, Karmazy, M, Kloc M, Mailer K. (1988). Heat-shock response is associated with enhanced post ischaemic ventricular recovery. Circ. Res.63 (3):543-549. doi: 10.1111/j.1365-2249.2006.03109.x
100. Perdrizet GA, Kaneko H, Buckely TM, Fishman MS, Pleau M, Bow L, Schweizer RT. (1993). Heat shock recovery protects renal allografts from warm ischemic injury and enhances HSP72 production. Transpl. Proc. 25: 1670-1673.
101. Hightower LE. (1991). Heat shock, stress proteins, chaperones, and proteotoxicity. Cell.; 66(2):191-197.
102. Moseley P. (2000).Stress proteins and the immune response. Immunopharmacology. 48(3):299-302.
103. Tang-chun W, Han-zhen H, Tanguay RM, Yang W, Dai-gen X, Currie RW, Shen Q, Jia-de F, Guo-gao Z. (1995). The combined effects of high temperature and carbon monoxide on heat stress response. Journal of Huazhong University of Science and Technology--Medical Sciences. 15(3):178-83.
104. Wu TC, Yuan Y, Bi YY, HE HZ, Zhang GG. (1998).BPlasma free amino acids in workers working under different stress conditions. Journal of Occupational Health.40(3):203-6.
105. Wu T, Chen S, Xiao C, Wang C, Pan Q, Wang Z, Xie M, Mao Z, Wu Y, Tanguay RM. (2001). Presence of antibody against the inducible Hsp71 in patients with acute heat-induced illness. Cell stress & chaperones. 6(2):113-20.
106. Wang Y, Whittall T, McGowan E, Younson J, Kelly C, Bergmeier LA, Singh M, Lehner T (2005). Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells. J Immunol.; 174(6):3306–3316
107. Mundel T, Bunn SJ, Hooper PL, Jones DA. (2007). The effects of face cooling during hyperthermic exercise in man: evidence for an integrated thermal, neuroendocrine and behavioural response. Exp Physiol. 92(1):187–195.
108. Li GC, Li L, Liu RY, Rehman M, Lee WM. (1992). Heat shock protein HSP70 protects cells from thermal stress even after deletion of its ATP-binding domain. Proceedings of the National Academy of Sciences. 15;89(6):2036-40.
109. Pelham HR. Hsp70 accelerates the recovery of nucleolar morphology after heat shock. The EMBO Journal. 1984 Dec 20;3(13):3095.
110. Barnes JA, Collins BW, Dix DJ, Allen JW. (2002). Effects of heat shock protein 70 (HSP70) on arsenite‐induced genotoxicity. Environmental and molecular mutagenesis 40(4): 236-242.
111. Febbraio MA, Ott P, Nielsen HB. (2002). Exercise induces hepatosplanchnic release of heat shock protein 72 in humans. J Physiol. 544(3):957–962.
112. Rowell LB. (1974). Human cardiovascular adjustments to exercise and thermal stress. Physiol Rev. 54(1):75–159
113. Bierkens, JGEA. (2000). Applications and pitfalls of stress-proteins in biomonitoring. Toxicology 153: 61–72. doi.org/10.1016/S0300-483X(00)00304-8
114. Pandita TK, Higashikubo R, Hunt CR (2004). HSP70 and genomic stability. Cell Cycle. 3(5):591-2.
115. Ciocca DR, Clark GM, Tandon AK, Suzanne A. W. Fuqua, William J.Welch, William L. McGuire (1993). Heat Shock Protein HSP70 in Patients with Axillary Lymph Node-Negative Breast Cancer: Prognostic Implications. Journal of the National Cancer Institute.85(7): 570–574 DOI: 10.1093/jnci/85.7.570
116. Radons J, Multhoff G (2005) Immunostimulatory functions of membrane-bound and exported heat shock protein 70. Exerc Immunol Rev 11:17–33
117. Luber G, Geehin MM. (2008). Climate Change and Extreme Heat Events. American Journal of Preventive Medicine. 35 (5): 429-435 DOI: doi.org/10.1016/j.amepre.2008.08.021