Resistance of Culex quinquefasciatus to selected chemical and biological pesticides.

Main Article Content

O. Skovmand E. Sanogo

Abstract

Resistance of 3 organophosphorous insecticides (malathion, temephos, and chlorpyrifos), one carbamate (propoxur), and one pyrethroid (permethrin and permethrin + piperonyl butoxid), DDT and two microbial insecticides: Bacillus thuringiensis and B. sphaericus was investigated on Culex quinquefasciatus in Ougadougou, Burkina Faso, in 1996-97. The results showed that there was little or no resistance to the bio-larvicides, to the OP-compounds and the carbamate, but significant resistance to the pyrethroid and very high resistance to DDT. OP compounds were used in the 70s in less extensive campaigns, whereas DDT was used in Ouagadougou in the malaria campaign in the 60s. The data provide background for a follow-up on resistance measurements in C. quinquefasciatus that like Anopheles gambiae bites humans by night and therefore are expected to be impacted by and impact the LLIN campaigns realized in the town since 2004.

Keywords: C. quinquefasciatus, resistance, pyrethroids, DDT, Bacillus

Article Details

How to Cite
SKOVMAND, O.; SANOGO, E.. Resistance of Culex quinquefasciatus to selected chemical and biological pesticides.. Medical Research Archives, [S.l.], v. 6, n. 4, apr. 2018. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/1773>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v6i4.1773.
Section
Research Articles

References

1. Van Bortel, W, Barutwanayo M, Delacolette C, Coosemans M. Motivation à l’acquisition et à l’utilisation des moustiqaires imprégnées dans une zone à paludisme stable au Burundi. Trop Med Int Health 1996; 1 :71-80.
2. Thomson M, Coonor S, Bennet S, D’Alessandro U, Milligan P, Aikins P, Langerock P, Jawara M, Greenwood B. Geographical perspectives on bednet use and malaria transmission in The Gambia. West Africa Soc Sci Med 1996; 43, 101-112.
3. Samuelsen H, Toe L, Baldet T, Skovmand O. Prevention of mosquito nuisance among urban populations in Burkina Fao. Soc Sci Med 2004; 59:2361-71.
4. Skovmand O, Ouedraogo TDA, Sanogo E, Samuelsen H, Toe LP, Bosselmann R, Cjajkowski T, Baldet T. Cost of integrated vector control with improved sanitation and road infrastructure coupled with theuse of slow-release Bacillus sphaericus granules in a tropical setting, J Med Entomol 2011; 45 (4): 813-21.
5. Skovmand O, Sanogo E. Comparsion of experimental formulations of Bacillus sphaericus and B thuringiensis israelensis against Culex quinquefasciatus and Anopheles gambiae in Burkina Faso, J Med Entomol 1999: 36:62-67.
6. Skovmand O, Ouedraogo TDA, Sanogo E, Samuelsen H, Toé LP, Baldet. Impact of slow-release Bacillus sphaericus on mosquito populations followed in tropical urban environment. J Med Entomol 2009; 46:67-76.
7. Skovmand O, Becker N: Bioassays of Bacillus thuringiensis subsp israelensis, In Bioassays of Entomopathogenic Microbes and Nematodes, eds Navon AG and Ascher KBS, CABI publishing, April 2000:41-57
8. WHO. Instructions for determining the susceptibility or resistance of adult mosquitoes to organochlorine, organophosphates and carbamate insecticides – diagnostic test. Geneva, 1981.
9. WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes, 2nd edition, 2016; Geneve. ISBN 978 92 4 151157 5.
10. Finney DJ 1971. Probit Analysis, Cambridge University Press, Cambridge.
11. Skovmand, O, Bauduin, S. Effect of granular formulation of Bacillus sphaericus against Culex quinquefasciatus and Anopheles gambiae in Vestafrican countries, 1997;22: 43-51
12. Omer SM, Georghiou GP, Irving SN. DDT/pyretrhoid resistance inter-relationships in Anopheles stephensi. Mosquito News 1980; 40:200-209.
13. Mouchet J. Mini-review: agriculture and vector resistance. Insect Sci Applicat J Vector Ecology 1988; 9:297-302.
14. Diabate A, Baldet T, Chandre F, Akogbeto M, Guiguemde TR, Darriet F, Brengues C , Guillet P, Hemingway J, Small GJ, Hougard JM. The role of agricultural use of insecticides in the resistance to pyretrhoids in Anophles gambiae in Burkina Faso, Am Trop Med Hyg 2002; 67(6): 617-22.
15. Ouedraogo TDA, Baldet T, Skovmand O, Kabre G, Guiguemde TR. Sensibilité de Culex quinquefasciatus aux insecticides à Bobo Dioulasso (Burkina Faso). Bull Soc Pathol Exot 2005 ; 98(5) :406-10.
16. Guillet P, N’Guessan R, Darriet F, Traore-Lamizana M, Chandre F, Carnevale P. Combined pyrethroid and carbamate “two-in-one” treated mosquito nets: field efficacy against pyrethroid-resistant Anopheles gambiae and Culex quinquefasciatus. J Med Vet Entomol 2001; 15 (1):105-12.
17. Chandre F, Dariet F, Duchon S, Finot L. Manguin S, Guillet P. Modifications of pyrethroid effects induced by kdr mutation in Anopheles gambiae. 1999.
18. Toe PL, Skovmand 0, Dabire, KR, Diabate A, Diallo Y, Guiguemdé TR, Doaninio JMR, Akogbeto M, Baldet T, Gruenais MF. Decreased motivation in the use of insecticide-treated nets in a malaria endemic area in Burkina Faso. Malar J 2009; 8:175
19. Hakizimana E, Karema C, Mu,yakanage D, Githure J, Mazarati JB, Tongren JE, Takken W, Koenraadt CJM. Spatio-temporal distribution of mosquitoes and risk of malaria infection in Rwanda. Acta Trop 2018
20. Kudom AA, Mensah BA, Froeschl G, Rinder H, Boakey D. DDT and pyrethroid resistance status and laboratory evaluation of bio-efficacy of long lasting treated nets against Culex quinquefasciatus and Culex decens in Ghana; Acta Trop 2015; 150:122-30.