Continuous Monitoring and Modeling Contractility of Skeletal Muscles in Motion: A Review

Main Article Content

Xi WANG Xiaoming Tao

Abstract

Continuous monitoring and analysis of skeletal muscles’ contractility have been extensively associated with sensing and bio-signal processing technologies and increasingly demanded by applications in the fields of sports, control and interaction, rehabilitation and medical care. While most existing approaches are confined in isometric studies in clinics or laboratories, researchers have been devoted in recent years towards continuous monitoring and analysis of skeletal muscles’ contractility in motion. This paper aims to provide an overview of current status of non-invasive sensing technologies for monitoring skeletal muscles’ activation, up-to-date findings on observing and characterizing the force-length and force-velocity relationships, and various existing activation-contractility models. In addition, this paper evaluates various sensing technologies for muscle activation, indicates challenges for bio-mechanical modeling on activation-contractility, and makes recommendations on future developments in continuous monitoring and analysis of skeletal muscles’ contractility in-motion.

Article Details

How to Cite
WANG, Xi; TAO, Xiaoming. Continuous Monitoring and Modeling Contractility of Skeletal Muscles in Motion: A Review. Medical Research Archives, [S.l.], v. 6, n. 6, june 2018. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/1797>. Date accessed: 28 dec. 2024. doi: https://doi.org/10.18103/mra.v6i6.1797.
Section
Review Articles

References

1. R. Hale and S. Mookerjee, EMG Amplitude-to-torque Ratios In Males And Females During Isokinetic Exercise. Medicine and Science in Sports and Exercise, 2014. 46(5): p. 189-190. DOI: 10.1249/01.mss.0000493748.38383.b4
2. R.C.H. So, J.K.F. Ng, R.W.K. Lam, C.K.K. Lo, and G.Y.F. Ng, EMG Wavelet Analysis of Quadriceps Muscle during Repeated Knee Extension Movement. Medicine and Science in Sports and Exercise, 2009. 41(4): p. 788-796. DOI: 10.1249/MSS.0b013e31818cb4d0
3. R.M. Campy, A.J. Coelho, and D.M. Pincivero, EMG-torque relationship and reliability of the medial and lateral hamstring muscles. Med Sci Sports Exerc, 2009. 41(11): p. 2064-71. DOI: 10.1249/MSS.0b013e3181a8c4cb
4. O.M. Blake, Y. Champoux, and J.M. Wakeling, Muscle coordination patterns for efficient cycling. Med Sci Sports Exerc, 2012. 44(5): p. 926-38. DOI: 10.1249/MSS.0b013e3182404d4b
5. G. Wei, F. Tian, G. Tang, and C. Wang, A Wavelet-Based Method to Predict Muscle Forces From Surface Electromyography Signals in Weightlifting. Journal of Bionic Engineering, 2012. 9(1): p. 48-58. DOI: 10.1016/s1672-6529(11)60096-6
6. J. Marusiak, A. Jaskólska, K. Kisiel-Sajewicz, G.H. Yue, and A. Jaskólski, EMG and MMG activities of agonist and antagonist muscles in Parkinson’s disease patients during absolute submaximal load holding. Journal of electromyography and kinesiology, 2009. 19(5): p. 903-914. DOI: 10.1016/j.jelekin.2008.03.003
7. R.P. Hubble, G.A. Naughton, P.A. Silburn, and M.H. Cole, Wearable Sensor Use for Assessing Standing Balance and Walking Stability in People with Parkinson's Disease: A Systematic Review. Plos One, 2015. 10(4). DOI: 10.1371/journal.pone.0123705
8. J. Shi, Y.P. Zheng, X. Chen, and Q.H. Huang, Assessment of muscle fatigue using sonomyography: Muscle thickness change detected from ultrasound images. Medical Engineering & Physics, 2007. 29(4): p. 472-479. DOI: 10.1016/j.medengphy.2006.07.004
9. K.T. Ebersole and D.M. Malek, Fatigue and the electromechanical efficiency of the vastus medialis and vastus lateralis muscles. J Athl Train, 2008. 43(2): p. 152-6. DOI: 10.4085/1062-6050-43.2.152
10. C.R. Hendrix, T.J. Housh, G.O. Johnson, M. Mielke, C.L. Camic, J.M. Zuniga, and R.J. Schmidt, Comparison of critical force to EMG fatigue thresholds during isometric leg extension. Med Sci Sports Exerc, 2009. 41(4): p. 956-64. DOI: 10.1249/MSS.0b013e318190bdf7
11. M. Song, D.B. Segala, J.B. Dingwell, and D. Chelidze, Slow-time changes in human EMG muscle fatigue states are fully represented in movement kinematics. J Biomech Eng, 2009. 131(2): p. 021004. DOI: 10.1115/1.3005177
12. J.M. Garcia-Manso, D. Rodriguez-Ruiz, D. Rodriguez-Matoso, Y. de Saa, S. Sarmiento, and M. Quiroga, Assessment of muscle fatigue after an ultra-endurance triathlon using tensiomyography (TMG). Journal of Sports Sciences, 2011. 29(6): p. 619-625. DOI: 10.1080/02640414.2010.548822
13. H. Han, S. Jo, and J. Kim, Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions. Medical & Biological Engineering & Computing, 2015. 53(7): p. 577-588. DOI: 10.1007/s11517-015-1271-1
14. W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, and X.M. Tao, Fiber-based wearable electronics: a review of materials, fabrication, devices, and applications. Adv Mater, 2014. 26(31): p. 5310-36. DOI: 10.1002/adma.201400633
15. P.W. Hodges, L.H.M. Pengel, R.D. Herbert, and S.C. Gandevia, Measurement of muscle contraction with ultrasound imaging. Muscle & Nerve, 2003. 27(6): p. 682-692. DOI: 10.1002/Mus.10375
16. E.D. Ryan, T.W. Beck, T.J. Herda, M.J. Hartman, J.R. Stout, T.J. Housh, and J.T. Cramer, Mechanomyographic amplitude and mean power frequency responses during isometric ramp vs. step muscle actions. Journal of Neuroscience Methods, 2008. 168(2): p. 293-305. DOI: 10.1016/j.jneumeth.2007.10.010
17. H.S. Milner-Brown and R.B. Stein, The relation between the surface electromyogram and muscular force. The Journal of Physiology, 1975. 246(3): p. 549-569. DOI: 10.1113/jphysiol.1975.sp010904
18. J.H. Lawrence and C.J. De Luca, Myoelectric Signal Versus Force Relationship In Different Human Muscles. Journal Of Applied Physiology, 1983. 54(6): p. 1653-1659. DOI: 10.1152/jappl.1983.54.6.1653
19. E.A. Clancy, O. Bida, and D. Rancourt, Influence of advanced electromyogram (EMG) amplitude processors on EMG-to-torque estimation during constant-posture, force-varying contractions. Journal Of Biomechanics, 2006. 39(14): p. 2690-2698. DOI: 10.1016/j.jbiomechs.2005.08.007
20. J. Shi, Y.P. Zheng, Q.H. Huang, and X. Chen, Continuous monitoring of sonomyography, electromyography and torque generated by normal upper arm muscles during isometric contraction: Sonomyography assessment for arm muscles. Ieee Transactions on Biomedical Engineering, 2008. 55(3): p. 1191-1198. DOI: 10.1109/Tbme.2007.909538
21. J.Y. Guo, Y.P. Zheng, H.B. Xie, and X. Chen, Continuous monitoring of electromyography (EMG), mechanomyography (MMG), sonomyography (SMG) and torque output during ramp and step isometric contractions. Medical Engineering & Physics, 2010. 32(9): p. 1032-1042. DOI: 10.1016/j.medengphy.2010.07.004
22. N. Shima, C.J. McNeil, and C.L. Rice, Mechanomyographic and electromyographic responses to stimulated and voluntary contractions in the dorsiflexors of young and old men. Muscle & Nerve, 2007. 35(3): p. 371-378. DOI: 10.1002/Mus.20704
23. S.R. Perry-Rana, T.J. Housh, G.O. Johnson, A.J. Bull, and J.T. Cramer, MMG and EMG responses during 25 maximal, eccentric, isokinetic muscle actions. Medicine and Science in Sports and Exercise, 2003. 35(12): p. 2048-2054. DOI: 10.1249/01.Mss.0000099090.73560.77
24. E.J. Jones, P.A. Bishop, A.K. Woods, and F.M. Green, Cross-Sectional Area and Muscular Strength A Brief Review. Sports Medicine, 2008. 38(12): p. 987-994. DOI: 10.2165/00007256-200838120-00003
25. J. Davies, D.F. Parker, O.M. Rutherford, and D.A. Jones, Changes In Strength And Cross-Sectional Area Of the Elbow Flexors as a Result Of Isometric Strength Training. European Journal Of Applied Physiology And Occupational Physiology, 1988. 57(6): p. 667-670. DOI: 10.1007/Bf01075986
26. M.V. Narici, G.S. Roi, L. Landoni, A.E. Minetti, and P. Cerretelli, Changes In Force, Cross-Sectional Area And Neural Activation during Strength Training And Detraining Of the Human Quadriceps. European Journal Of Applied Physiology And Occupational Physiology, 1989. 59(4): p. 310-319. DOI: 10.1007/Bf02388334
27. T. Fukunaga, M. Miyatani, M. Tachi, M. Kouzaki, Y. Kawakami, and H. Kanehisa, Muscle volume is a major determinant of joint torque in humans. Acta Physiologica Scandinavica, 2001. 172(4): p. 249-255. DOI: 10.1046/j.1365-201x.2001.00867.x
28. R. Akagi, Y. Takai, M. Ohta, H. Kanehisa, Y. Kawakami, and T. Fukunaga, Muscle volume compared to cross-sectional area is more appropriate for evaluating muscle strength in young and elderly individuals. Age And Ageing, 2009. 38(5): p. 564-569. DOI: 10.1093/ageing/afp122
29. K. Hakkinen, M. Kallinen, M. Izquierdo, K. Jokelainen, H. Lassila, E. Malkia, W.J. Kraemer, R.U. Newton, and M. Alen, Changes in agonist-antagonist EMG, muscle CSA, and force during strength training in middle-aged and older people. J Appl Physiol (1985), 1998. 84(4): p. 1341-9. DOI: 10.1152/jappl.1998.84.4.1341
30. M.B. Raez, M.S. Hussain, and F. Mohd-Yasin, Techniques of EMG signal analysis: detection, processing, classification and applications. Biol Proced Online, 2006. 8: p. 11-35. DOI: 10.1251/bpo115
31. J.L. Dantas, T.V. Camata, M.A. Brunetto, A.C. Moraes, T. Abrao, and L.R. Altimari, Fourier and wavelet spectral analysis of EMG signals in isometric and dynamic maximal effort exercise. Conf Proc IEEE Eng Med Biol Soc, 2010. 2010: p. 5979-82. DOI: 10.1109/IEMBS.2010.5627579
32. J.Y. Hogrel, Use of surface EMG for studying motor unit recruitment during isometric linear force ramp. Journal of Electromyography and Kinesiology, 2003. 13(5): p. 417-423. DOI: 10.1016/s1050-6411(03)00026-9
33. P. Liu, L. Liu, F. Martel, D. Rancourt, and E.A. Clancy, Influence of joint angle on EMG-torque model during constant-posture, quasi-constant-torque contractions. J Electromyogr Kinesiol, 2013. 23(5): p. 1020-8. DOI: 10.1016/j.jelekin.2013.06.011
34. E.A. Clancy, L. Liu, P. Liu, and D.V. Moyer, Identification of constant-posture EMG-torque relationship about the elbow using nonlinear dynamic models. IEEE Trans Biomed Eng, 2012. 59(1): p. 205-12. DOI: 10.1109/TBME.2011.2170423
35. H. Cao, S. Boudaoud, F. Marin, and C. Marque, Surface EMG-force modelling for the biceps brachii and its experimental evaluation during isometric isotonic contractions. Comput Methods Biomech Biomed Engin, 2015. 18(9): p. 1014-1023. DOI: 10.1080/10255842.2013.867952
36. T.I. Suvinen and P. Kemppainen, Review of clinical EMG studies related to muscle and occlusal factors in healthy and TMD subjects. J Oral Rehabil, 2007. 34(9): p. 631-44. DOI: 10.1111/j.1365-2842.2007.01769.x
37. R.C. So, J.K. Ng, R.W. Lam, C.K. Lo, and G.Y. Ng, EMG wavelet analysis of quadriceps muscle during repeated knee extension movement. Med Sci Sports Exerc, 2009. 41(4): p. 788-96. DOI: 10.1249/MSS.0b013e31818cb4d0
38. E. Fujita, H. Kanehisa, Y. Yoshitake, T. Fukunaga, and H. Nishizono, Association between knee extensor strength and EMG activities during squat movement. Med Sci Sports Exerc, 2011. 43(12): p. 2328-34. DOI: 10.1249/MSS.0b013e3182207ed8
39. T.W. Beck, M.S. Stock, and J.M. Defreitas, Shifts in EMG spectral power during fatiguing dynamic contractions. Muscle Nerve, 2014. 50(1): p. 95-102. DOI: 10.1002/mus.24098
40. M. Sartori, M. Reggiani, D. Farina, and D.G. Lloyd, EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS One, 2012. 7(12): p. e52618. DOI: 10.1371/journal.pone.0052618
41. D.G. Lloyd and T.F. Besier, An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. Journal of Biomechanics, 2003. 36(6): p. 765-776. DOI: 10.1016/s0021-9290(03)00010-1
42. J. Langenderfer, S. LaScalza, A. Mell, J.E. Carpenter, J.E. Kuhn, and R.E. Hughes, An EMG-driven model of the upper extremity and estimation of long head biceps force. Comput Biol Med, 2005. 35(1): p. 25-39. DOI: 10.1016/j.compbiomed.2003.12.002
43. D. Shin, J. Kim, and Y. Koike, A myokinetic arm model for estimating joint torque and stiffness from EMG signals during maintained posture. J Neurophysiol, 2009. 101(1): p. 387-401. DOI: 10.1152/jn.00584.2007
44. S. Karlsson and B. Gerdle, Mean frequency and signal amplitude of the surface EMG of the quadriceps muscles increase with increasing torque--a study using the continuous wavelet transform. J Electromyogr Kinesiol, 2001. 11(2): p. 131-40. DOI: 10.1016/S1050-6411(00)00046-8
45. N.J. Cronin, S. Kumpulainen, T. Joutjarvi, T. Finni, and H. Piitulainen, Spatial variability of muscle activity during human walking: the effects of different EMG normalization approaches. Neuroscience, 2015. 300: p. 19-28. DOI: 10.1016/j.neuroscience.2015.05.003
46. N. Ball and J. Scurr, Electromyography normalization methods for high-velocity muscle actions: review and recommendations. J Appl Biomech, 2013. 29(5): p. 600-8. DOI: 10.1123/jab.29.5.600
47. W. Youn and J. Kim, Estimation of elbow flexion force during isometric muscle contraction from mechanomyography and electromyography. Med Biol Eng Comput, 2010. 48(11): p. 1149-57. DOI: 10.1007/s11517-010-0641-y
48. D. Farina and R. Merletti, Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions. J Electromyogr Kinesiol, 2000. 10(5): p. 337-49. DOI: 10.1016/S1050-6411(00)00025-0
49. K. Brzostowski and J. Swiatek, Different Approaches to Model Relationship Between EMG Signals and Force Moments in Human Skeletal Muscle. Analysis for Diagnosis of Neuronmuscular Disorders. Fundamenta Informaticae, 2009. 96(4): p. 465-475. DOI: 10.3233/Fi-2009-188
50. Q. Shao, D.N. Bassett, K. Manal, and T.S. Buchanan, An EMG-driven model to estimate muscle forces and joint moments in stroke patients. Comput Biol Med, 2009. 39(12): p. 1083-8. DOI: 10.1016/j.compbiomed.2009.09.002
51. E.A. Clancy, E.L. Morin, and R. Merletti, Sampling, noise-reduction and amplitude estimation issues in surface electromyography. Journal of Electromyography and Kinesiology, 2002. 12(1): p. 1-16. DOI: 10.1016/S1050-6411(01)00033-5
52. E. Huigen, A. Peper, and C.A. Grimbergen, Investigation into the origin of the noise of surface electrodes. Medical & Biological Engineering & Computing, 2002. 40(3): p. 332-338. DOI: 10.1007/Bf02344216
53. S. Nishimura, Y. Tomita, and T. Horiuchi, Clinical-Application of an Active Electrode Using an Operational-Amplifier. Ieee Transactions on Biomedical Engineering, 1992. 39(10): p. 1096-1099. DOI: 10.1109/10.161342
54. A. Hof, The relationship between electromyogram and muscle force. Sportverletzung• Sportschaden, 1997. 11(03): p. 79-86. DOI: 10.1055/s-2007-993372
55. A.L. Hof, Muscle mechanics and neuromuscular control. Journal of Biomechanics, 2003. 36(7): p. 1031-1038. DOI: 10.1016/S0021-9290(03)00036-8
56. M. Tanaka, T. Okuyama, and K. Saito, Study on evaluation of muscle conditions using a mechanomyogram sensor. 2011 Ieee International Conference on Systems, Man, and Cybernetics (Smc), 2011: p. 741-745. URL: https://www.thieme-connect.com/products/ejournals/abstract/10.1055/s-2007-993372
57. S. Kawakami, N. Kodama, N. Maeda, S. Sakamoto, K. Oki, Y. Yanagi, J.I. Asaumi, T. Maeda, and S. Minagi, Mechanomyographic activity in the human lateral pterygoid muscle during mandibular movement. Journal of Neuroscience Methods, 2012. 203(1): p. 157-162. DOI: 10.1016/j.jneumeth.2011.09.026
58. L.P. Qi, J.M. Wakeling, A. Green, K. Lambrecht, and M. Ferguson-Pell, Spectral properties of electromyographic and mechanomyographic signals during isometric ramp and step contractions in biceps brachii. Journal of Electromyography and Kinesiology, 2011. 21(1): p. 128-135. DOI: 10.1016/j.jelekin.2010.09.006
59. K.F. Lei, W.W. Tsai, W.Y. Lin, and M.Y. Lee, MMG-Torque Estimation under Dynamic Contractions. 2011 Ieee International Conference on Systems, Man, and Cybernetics (Smc), 2011: p. 585-590. URL: http://ieeexplore.ieee.org/abstract/document/6083774/
60. E.M. Scheeren, E. Krueger-Beck, G. Nogueira-Neto, P. Nohama, and V.L.d.S.N. Button, Wrist Movement Characterization by Mechanomyography. Journal of Medical and Biological Engineering, 2010. 30(6): p. 373-380. DOI: 10.5405/jmbe.757
61. C. Orizio, M. Solomonow, B. Diemont, and M. Gobbo, Muscle-joint unit transfer function derived from torque and surface mechanomyogram in humans using different stimulation protocols. Journal of Neuroscience Methods, 2008. 173(1): p. 59-66. DOI: 10.1016/j.jneumeth.2008.05.012
62. T.W. Beck, M.A. Dillon, J.M. DeFreitas, and M.S. Stock, Cross-correlation analysis of mechanomyographic signals detected in two axes. Physiological Measurement, 2009. 30(12): p. 1465-1471. DOI: 10.1088/0967-3334/30/12/012
63. M.O. Ibitoye, N.A. Hamzaid, J.M. Zuniga, N. Hasnan, and A.K. Wahab, Mechanomyographic parameter extraction methods: an appraisal for clinical applications. Sensors (Basel), 2014. 14(12): p. 22940-70. DOI: 10.3390/s141222940
64. T.W. Beck, T.J. Housh, J.T. Cramer, J.P. Weir, G.O. Johnson, J.W. Coburn, M.H. Malek, and M. Mielke, Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. Biomed Eng Online, 2005. 4: p. 67. DOI: 10.1186/1475-925X-4-67
65. Y. Yoshitake, M. Shinohara, H. Ue, and T. Moritani, Characteristics of surface mechanomyogram are dependent on development of fusion of motor units in humans. J Appl Physiol (1985), 2002. 93(5): p. 1744-52. DOI: 10.1152/japplphysiol.00008.2002
66. F.V. Brozovich and G.H. Pollack, Muscle-Contraction Generates Discrete Sound Bursts. Biophysical Journal, 1983. 41(1): p. 35-40. DOI: 10.1016/S0006-3495(83)84403-8
67. N. Alves and T. Chau, Stationarity distributions of mechanomyogram signals from isometric contractions of extrinsic hand muscles during functional grasping. Journal of Electromyography and Kinesiology, 2008. 18(3): p. 509-515. DOI: 10.1016/j.jelekin.2006.11.010
68. H.B. Xie, Y.P. Zheng, and J.Y. Guo, Classification of the mechanomyogram signal using a wavelet packet transform and singular value decomposition for multifunction prosthesis control. Physiological Measurement, 2009. 30(5): p. 441-457. DOI: 10.1088/0967-3334/30/5/002
69. P.E. Taylor, G.J. Almeida, T. Kanade, and J.K. Hodgins, Classifying human motion quality for knee osteoarthritis using accelerometers. Conf Proc IEEE Eng Med Biol Soc, 2010. 2010: p. 339-43. DOI: 10.1109/IEMBS.2010.5627665
70. S.L. Tian, Y. Liu, L. Li, W.J. Fu, and C.H. Peng, Mechanomyography is more sensitive than EMG in detecting age-related sarcopenia. Journal of Biomechanics, 2010. 43(3): p. 551-556. DOI: 10.1016/j.jbiomech.2009.09.034
71. J. Silva, W. Heim, and T. Chau, MMG-based classification of muscle activity for prosthesis control. Conf Proc IEEE Eng Med Biol Soc, 2004. 2: p. 968-71. DOI: 10.1109/IEMBS.2004.1403322
72. N. Alves, T.H. Falk, and T. Chau, A novel integrated mechanomyogram-vocalization access solution. Med Eng Phys, 2010. 32(8): p. 940-4. DOI: 10.1016/j.medengphy.2010.06.003
73. C. Orizio, M. Gobbo, B. Diemont, F. Esposito, and A. Veicsteinas, The surface mechanomyogram as a tool to describe the influence of fatigue on biceps brachii motor unit activation strategy. Historical basis and novel evidence. Eur J Appl Physiol, 2003. 90(3-4): p. 326-36. DOI: 10.1007/s00421-003-0924-1
74. E. Bichler, Mechanomyograms recorded during evoked contractions of single motor units in the rat medial gastrocnemius muscle. Eur J Appl Physiol, 2000. 83(4 -5): p. 310-9. DOI: 10.1007/s004210000261
75. M.T. Tarata, Mechanomyography versus electromyography, in monitoring the muscular fatigue. Biomed Eng Online, 2003. 2: p. 3. DOI: 10.1186/1475-925X-2-3
76. A. Archer and K.G. Sabra, Two dimensional spatial coherence of the natural vibrations of the biceps brachii muscle generated during voluntary contractions. Conf Proc IEEE Eng Med Biol Soc, 2010. 2010: p. 170-3. DOI: 10.1109/IEMBS.2010.5627271
77. F. Esposito, E. Limonta, and E. Ce, Time course of stretching-induced changes in mechanomyogram and force characteristics. J Electromyogr Kinesiol, 2011. 21(5): p. 795-802. DOI: 10.1016/j.jelekin.2011.07.012
78. J.T. Cramer, T.W. Beck, T.J. Housh, L.L. Massey, S.M. Marek, S. Danglemeier, S. Purkayastha, J.Y. Culbertson, K.A. Fitz, and A.D. Egan, Acute effects of static stretching on characteristics of the isokinetic angle - torque relationship, surface electromyography, and mechanomyography. J Sports Sci, 2007. 25(6): p. 687-98. DOI: 10.1080/02640410600818416
79. G. Trager, G. Michaud, S. Deschamps, and T.M. Hernmerling, Comparison of phonomyography, kinemyography and mechanomyography for neuromuscular monitoring. Canadian Journal of Anaesthesia-Journal Canadien D Anesthesie, 2006. 53(2): p. 130-135. DOI: 10.1007/Bf03021816
80. S.M. Marek, J.T. Cramer, A.L. Fincher, L.L. Massey, S.M. Dangelmaier, S. Purkayastha, K.A. Fitz, and J.Y. Culbertson, Acute Effects of Static and Proprioceptive Neuromuscular Facilitation Stretching on Muscle Strength and Power Output. J Athl Train, 2005. 40(2): p. 94-103. DOI: 10.1016/S0162-0908(08)70360-X
81. E.D. Ryan, J.T. Cramer, T.J. Housh, T.W. Beck, T.J. Herda, and M.J. Hartman, Inter-individual variability in the torque-related patterns of responses for mechanomyographic amplitude and mean power frequency. J Neurosci Methods, 2007. 161(2): p. 212-9. DOI: 10.1016/j.jneumeth.2006.11.007
82. J.T. Cramer, T.J. Housh, G.O. Johnson, K.T. Ebersole, S.R. Perry, and A.J. Bull, Mechanomyographic amplitude and mean power output during maximal, concentric, isokinetic muscle actions. Muscle Nerve, 2000. 23(12): p. 1826-31.
83. K. Akataki, K. Mita, M. Watakabe, and K. Itoh, Mechanomyographic responses during voluntary ramp contractions of the human first dorsal interosseous muscle. Eur J Appl Physiol, 2003. 89(6): p. 520-5. DOI: 10.1007/s00421-003-0835-1
84. J.W. Coburn, T.J. Housh, J.T. Cramer, J.P. Weir, J.M. Miller, T.W. Beck, M.H. Malek, and G.O. Johnson, Mechanomyographic time and frequency domain responses of the vastus medialis muscle during submaximal to maximal isometric and isokinetic muscle actions. Electromyogr Clin Neurophysiol, 2004. 44(4): p. 247-55. URL: https://www.ncbi.nlm.nih.gov/pubmed/15224821
85. M.A. Islam, K. Sundaraj, R.B. Ahmad, and N.U. Ahamed, Mechanomyogram for muscle function assessment: a review. PLoS One, 2013. 8(3): p. e58902. DOI: 10.1371/journal.pone.0058902
86. T.W. Beck, T.J. Housh, G.O. Johnson, J.P. Weir, J.T. Cramer, J.W. Coburn, and M.H. Malek, Comparison of Fourier and wavelet transform procedures for examining the mechanomyographic and electromyographic frequency domain responses during fatiguing isokinetic muscle actions of the biceps brachii. J Electromyogr Kinesiol, 2005. 15(2): p. 190-9. DOI: 10.1016/j.jelekin.2004.08.007
87. R.L. Lieber and J. Friden, Functional and clinical significance of skeletal muscle architecture. Muscle Nerve, 2000. 23(11): p. 1647-66. DOI: 10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.3.CO;2-D
88. R. Akagi, S. Iwanuma, S. Hashizume, H. Kanehisa, T. Fukunaga, and Y. Kawakami, Determination of Contraction-Induced Changes in Elbow Flexor Cross-Sectional Area for Evaluating Muscle Size-Strength Relationship during Contraction. Journal of Strength and Conditioning Research, 2015. 29(6): p. 1741-1747. DOI: 10.1519/JSC.0000000000000793
89. D.B. Starkey, M.L. Pollock, Y. Ishida, M.A. Welsch, W.F. Brechue, J.E. Graves, and M.S. Feigenbaum, Effect of resistance training volume on strength and muscle thickness. Medicine and Science in Sports and Exercise, 1996. 28(10): p. 1311-1320. DOI: 10.1097/00005768-199610000-00016
90. R. Akagi, S. Iwanuma, M. Fukuoka, H. Kanehisa, T. Fukunaga, and Y. Kawakami, Methodological Issues Related to Thickness-Based Muscle Size Evaluation. Journal Of Physiological Anthropology, 2011. 30(4): p. 169-174. DOI: 10.2114/Jpa2.30.169
91. M. Miyatani, H. Kanehisa, M. Ito, Y. Kawakami, and T. Fukunaga, The accuracy of volume estimates using ultrasound muscle thickness measurements in different muscle groups. Eur J Appl Physiol, 2004. 91(2-3): p. 264-72. DOI: 10.1007/s00421-003-0974-4
92. P.K. Commean, L.J. Tuttle, M.K. Hastings, M.J. Strube, and M.J. Mueller, Magnetic resonance imaging measurement reproducibility for calf muscle and adipose tissue volume. J Magn Reson Imaging, 2011. 34(6): p. 1285-94. DOI: 10.1002/jmri.22791
93. A.R. Seo, H.Y. Jang, W.S. Kim, C.S. Han, and J.S. Han, Development and verification of a volume sensor for measuring human behavior. International Journal of Precision Engineering and Manufacturing, 2012. 13(6): p. 899-904. DOI: 10.1007/s12541-012-0117-0
94. A. Macaluso, M.A. Nimmo, J.E. Foster, M. Cockburn, N.C. McMillan, and G. De Vito, Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle Nerve, 2002. 25(6): p. 858-63. DOI: 10.1002/mus.10113
95. G. Chi-Fishman, J.E. Hicks, H.M. Cintas, B.C. Sonies, and L.H. Gerber, Ultrasound imaging distinguishes between normal and weak muscle. Archives of Physical Medicine and Rehabilitation, 2004. 85(6): p. 980-986. DOI: 10.1016/j.apmr.2003.07.008
96. M. Ikai and T. Fukunaga, A Study on Training Effect on Strength Per Unit Cross-Sectional Area of Muscle by Means of Ultrasonic Measurement. Internationale Zetischrift Fur Angewandte Physiologie Einschliesslich Arbeitsphysiologie, 1970. 28(3): p. 173-180. DOI: 10.1007/BF00696025
97. A. Wilson, J.A. Hides, L. Blizzard, M. Callisaya, A. Cooper, V.K. Srikanth, and T. Winzenberg, Measuring ultrasound images of abdominal and lumbar multifidus muscles in older adults: A reliability study. Man Ther, 2016. 23: p. 114-9. DOI: 10.1016/j.math.2016.01.004
98. M.V. Franchi, P.J. Atherton, N.D. Reeves, M. Fluck, J. Williams, W.K. Mitchell, A. Selby, R.M. Beltran Valls, and M.V. Narici, Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol (Oxf), 2014. 210(3): p. 642-54. DOI: 10.1111/apha.12225
99. Y. Qi, C.B. Soh, E. Gunawan, K.S. Low, and R. Thomas, Lower Extremity Joint Angle Tracking with Wireless Ultrasonic Sensors during a Squat Exercise. Sensors (Basel), 2015. 15(5): p. 9610-27. DOI: 10.3390/s150509610
100. L.K. Kwah, R.Z. Pinto, J. Diong, and R.D. Herbert, Reliability and validity of ultrasound measurements of muscle fascicle length and pennation in humans: a systematic review. J Appl Physiol (1985), 2013. 114(6): p. 761-9. DOI: 10.1152/japplphysiol.01430.2011
101. E.M. Strasser, T. Draskovits, M. Praschak, M. Quittan, and A. Graf, Association between ultrasound measurements of muscle thickness, pennation angle, echogenicity and skeletal muscle strength in the elderly. Age, 2013. 35(6): p. 2377-2388. DOI: 10.1007/s11357-013-9517-z
102. J.G. Gillett, R.S. Barrett, and G.A. Lichtwark, Reliability and accuracy of an automated tracking algorithm to measure controlled passive and active muscle fascicle length changes from ultrasound. Computer Methods in Biomechanics and Biomedical Engineering, 2013. 16(6): p. 678-687. DOI: 10.1080/10255842.2011.633516
103. A. Cuesta-Vargas and M. Gonzalez-Sanchez, Correlation between architectural variables and torque in the erector spinae muscle during maximal isometric contraction. J Sports Sci, 2014. 32(19): p. 1797-804. DOI: 10.1080/02640414.2014.924054
104. R.E. Stafford, J.A. Ashton-Miller, C.E. Constantinou, and P.W. Hodges, A New Method to Quantify Male Pelvic Floor Displacement From 2D Transperineal Ultrasound Images. Urology, 2013. 81(3): p. 685-689. DOI: 10.1016/j.urology.2012.11.034
105. M. Leitner, H. Moser, J. Taeymans, A. Kuhn, and L. Radlinger, Pelvic floor muscle displacement during voluntary and involuntary activation in continent and incontinent women: a systematic review. International Urogynecology Journal, 2015. 26(11): p. 1587-1598. DOI: 10.1007/s00192-015-2700-2
106. Y.P. Zheng, M.M.F. Chan, J. Shi, X. Chen, and Q.H. Huang, Sonomyography: Monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis. Medical Engineering & Physics, 2006. 28(5): p. 405-415. DOI: 10.1016/j.medengphy.2005.07.012
107. D. Guo, S.B. Bai, and Q. Wang, A novel halogen-free flame retardant poly (vinyl alcohol) foam with intrinsic flame retardant characteristics prepared through continuous extrusion. Journal of Cellular Plastics, 2015. 51(2): p. 145-163. DOI: 10.1177/0021955X14529296
108. P. Sitilertpisan, U. Pirunsan, A. Puangmali, J. Ratanapinunchai, S. Kiatwattanacharoen, H. Neamin, and J.J. Laskin, Comparison of lateral abdominal muscle thickness between weightlifters and matched controls. Phys Ther Sport, 2011. 12(4): p. 171-4. DOI: 10.1016/j.ptsp.2011.02.002
109. R.G. Timmins, A.J. Shield, M.D. Williams, C. Lorenzen, and D.A. Opar, Architectural adaptations of muscle to training and injury: a narrative review outlining the contributions by fascicle length, pennation angle and muscle thickness. Br J Sports Med, 2016. DOI: 10.1136/bjsports-2015-094881
110. J.-Y. Guo, Dynamic monitoring of forearm muscles using one-dimensional sonomyography system. The Journal of Rehabilitation Research and Development, 2008. 45(1): p. 187-196. DOI: 10.1682/jrrd.2007.02.0026
111. P.W. Hodges, L.H. Pengel, R.D. Herbert, and S.C. Gandevia, Measurement of muscle contraction with ultrasound imaging. Muscle Nerve, 2003. 27(6): p. 682-92. DOI: 10.1002/mus.10375
112. R. Akagi, S. Iwanuma, S. Hashizume, H. Kanehisa, T. Yanai, and Y. Kawakami, Association Between Contraction-Induced Increases in Elbow Flexor Muscle Thickness and Distal Biceps Brachii Tendon Moment Arm Depends on the Muscle Thickness Measurement Site. Journal of Applied Biomechanics, 2014. 30(1): p. 134-139. DOI: 10.1123/jab.2012-0145
113. T. Abe, J.P. Loenneke, and R.S. Thiebaud, Morphological and functional relationships with ultrasound measured muscle thickness of the lower extremity: a brief review. Ultrasound, 2015. 23(3): p. 166-173. DOI: 10.1177/1742271X15587599
114. P.W. Hodges, Ultrasound imaging in rehabilitation: Just a fad? Journal of Orthopaedic & Sports Physical Therapy, 2005. 35(6): p. 333-337. DOI: 10.2519/jospt.2005.0106
115. R.D. Herbert, A.M. Moseley, J.E. Butler, and S.C. Gandevia, Change in length of relaxed muscle fascicles and tendons with knee and ankle movement in humans. Journal of Physiology-London, 2002. 539(2): p. 637-645. DOI: 10.1013/jphysiol.2001.012756
116. L. Ito, Y. Kawakami, Y. Ichinose, S. Fukashiro, and T. Fukunaga, Nonisometric behavior of fascicles during isometric contractions of a human muscle. Journal of Applied Physiology, 1998. 85(4): p. 1230-1235. DOI: 10.1152/jappl.1998.85.4.1230
117. M.V. Narici, T. Binzoni, E. Hiltbrand, J. Fasel, F. Terrier, and P. Cerretelli, In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction. Journal of Physiology-London, 1996. 496(1): p. 287-297. DOI: 10.1113/jphysiol.1996.sp021685
118. L.F. de Oliveira and L.L. Menegaldo, Individual-specific muscle maximum force estimation using ultrasound for ankle joint torque prediction using an EMG-driven Hill-type model. Journal of Biomechanics, 2010. 43(14): p. 2816-2821. DOI: 10.1016/j.jbiomech.2010.05.035
119. J.M. Garcia, B. Calvo, L. Monteiro, L. Massuca, J. Portillo, and J. Abian-Vicen, Impact of hydration on muscle contraction properties of elite competitive wrestlers. Archives of Budo, 2016. 12: p. 25-34. URL: http://hdl.handle.net/10578/8157
120. I. Loturco, L.A. Pereira, R. Kobal, K. Kitamura, R. Ramirez-Campillo, V. Zanetti, C.C.C. Abad, and F.Y. Nakamura, Muscle Contraction Velocity: A Suitable Approach to Analyze the Functional Adaptations in Elite Soccer Players. Journal of Sports Science and Medicine, 2016. 15(3): p. 483-491. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974861/
121. H.V. Wilson, M.I. Johnson, and P. Francis, Repeated stimulation, inter-stimulus interval and inter-electrode distance alters muscle contractile properties as measured by Tensiomyography. Plos One, 2018. 13(2). DOI: ARTN e0191965 10.1371/journal.pone.0191965
122. P. Alvarez-Diaz, E. Alentorn-Geli, S. Ramon, M. Marin, G. Steinbacher, M. Rius, R. Seijas, J. Ballester, and R. Cugat, Comparison of tensiomyographic neuromuscular characteristics between muscles of the dominant and non-dominant lower extremity in male soccer players. Knee Surgery Sports Traumatology Arthroscopy, 2016. 24(7): p. 2259-2263. DOI: 10.1007/s00167-014-3298-5
123. R.A.D. Simola, N. Harms, C. Raeder, M. Kellmann, T. Meyer, M. Pfeiffer, and A. Ferrauti, Assessment of Neuromuscular Function after Different Strength Training Protocols Using Tensiomyography. Journal of Strength and Conditioning Research, 2015. 29(5): p. 1339-1348. DOI: 10.1519/JSC.0000000000000768
124. A.K. Bansal, S.B. Hou, O. Kulyk, E.M. Bowman, and I.D.W. Samuel, Wearable Organic Optoelectronic Sensors for Medicine. Advanced Materials, 2015. 27(46): p. 7638-+. DOI: 10.1002/adma.201403560
125. A. Chianura and M.E. Giardini, An electrooptical muscle contraction sensor. Medical & Biological Engineering & Computing, 2010. 48(7): p. 731-734. DOI: 10.1007/s11517-010-0626-x
126. L. Cen, H. Han, and J. Kim, Optical muscle activation sensors for estimating upper limb force level. 2011 Ieee International Instrumentation and Measurement Technology Conference (I2mtc), 2011: p. 1657-1660. URL: http://ieeexplore.ieee.org/abstract/document/5944228/
127. M. Belau, M. Ninck, G. Hering, L. Spinelli, D. Contini, A. Torricelli, and T. Gisler, Noninvasive observation of skeletal muscle contraction using near-infrared time-resolved reflectance and diffusing-wave spectroscopy. Journal of Biomedical Optics, 2010. 15(5). DOI: Artn 057007 10.1117/1.3503398
128. M. Ferrari, M. Muthalib, and V. Quaresima, The use of near-infrared spectroscopy in understanding skeletal muscle physiology: recent developments. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2011. 369(1955): p. 4577-4590. DOI: 10.1098/rsta.2011.0230
129. I. AlMohimeed, H. Turkistani, and Y. Ono, Development of Wearable and Flexible Ultrasonic Sensor for Skeletal Muscle Monitoring. 2013 Ieee International Ultrasonics Symposium (Ius), 2013: p. 1129-1132. DOI: 10.1109/Ultsym.2013.0291
130. N. Hettiarachchi, Z.J. Ju, and H.H. Liu, A New Wearable Ultrasound Muscle Activity Sensing System for Dexterous Prosthetic Control. 2015 Ieee International Conference on Systems, Man, and Cybernetics (Smc 2015): Big Data Analytics for Human-Centric Systems, 2015: p. 1415-1420. DOI: 10.1109/Smc.2015.251
131. H. Han and J. Kim, Active muscle stiffness sensor based on piezoelectric resonance for muscle contraction estimation. Sensors and Actuators a-Physical, 2013. 194: p. 212-219. DOI: 10.1016/j.sna.2013.01.054
132. W.S. Kim, H.D. Lee, D.H. Lim, J.S. Han, K.S. Shin, and C.S. Han, Development of a muscle circumference sensor to estimate torque of the human elbow joint. Sensors and Actuators a-Physical, 2014. 208: p. 95-103. DOI: 10.1016/j.sna.2013.12.036
133. X. Wang, X.M. Tao, R.C.H. So, L. Shu, B. Yang, and Y. Li, Monitoring elbow isometric contraction by novel wearable fabric sensing device. Smart Materials and Structures, 2016. 25(12). DOI: Artn 125022 10.1088/0964-1726/25/12/125022
134. X. Wang, X.M. Tao, and R.C.H. So, A Bio-mechanical Model for Elbow Isokinetic and Isotonic Flexions. Scientific Reports, 2017. 7. DOI: Artn 8919 10.1038/S41598-017-09071-X
135. P. Bifulco, D. Esposito, G.D. Gargiulo, S. Savino, V. Niola, L. Iuppariello, and M. Cesarelli. A stretchable, conductive rubber sensor to detect muscle contraction for prosthetic hand control. in 2017 E-Health and Bioengineering Conference (EHB). 2017. DOI: 10.1109/EHB.2017.7995389
136. D. Zhang, Y. Matsuoka, W. Kong, U. Imtiaz, L. Bartolomeo, S. Cosentino, M. Zecca, S. Sessa, H. Ishii, and A. Takanishi, Development of new muscle contraction sensor to replace sEMG for using in muscles analysis fields. 2014 36th Annual International Conference of the Ieee Engineering in Medicine and Biology Society (Embc), 2014: p. 6945-6948. URL: http://ieeexplore.ieee.org/abstract/document/6945225/
137. M. Zhang, Y.P. Zheng, and A.F. Mak, Estimating the effective Young's modulus of soft tissues from indentation tests--nonlinear finite element analysis of effects of friction and large deformation. Med Eng Phys, 1997. 19(6): p. 512-7. DOI: 10.1016/S1350-4533(97)00017-9
138. D.R. Ruiz, M.E.Q. Escudero, D.R. Matoso, S.S. Montesdeoca, J.L. Reyna, Y.D. Guerra, G.P. Bautista, and J.M.G. Manso, The Tensiomyography Used for Evaluating High Level Beach Volleyball Players. Revista Brasileira De Medicina Do Esporte, 2012. 18(2): p. 95-99. DOI: 10.1590/S1517-86922012000200006
139. A.M. Hunter, S.D.R. Galloway, I.J. Smith, J. Tallent, M. Ditroilo, M.M. Fairweather, and G. Howatson, Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography. Journal of Electromyography and Kinesiology, 2012. 22(3): p. 334-341. DOI: 10.1016/j.jelekin.2012.01.009
140. K. Kersevan, V. Valencic, S. Djordjevic, and B. Simunic, The muscle adaptation process as a result of pathological changes or specific training procedures. Cellular & Molecular Biology Letters, 2002. 7(2): p. 367-369. URL: http://europepmc.org/abstract/med/12097988
141. E. Alentorn-Geli, P. Alvarez-Diaz, S. Ramon, M. Marin, G. Steinbacher, M. Rius, R. Seijas, O. Ares, and R. Cugat, Assessment of gastrocnemius tensiomyographic neuromuscular characteristics as risk factors for anterior cruciate ligament injury in male soccer players. Knee Surgery Sports Traumatology Arthroscopy, 2015. 23(9): p. 2502-2507. DOI: 10.1007/s00167-014-3007-4
142. S. Martin-Rodriguez, E. Alentorn-Geli, J. Tous-Fajardo, K. Samuelsson, M. Marin, P. Alvarez-Diaz, and R. Cugat, Is tensiomyography a useful assessment tool in sports medicine? Knee Surgery Sports Traumatology Arthroscopy, 2017. 25(12): p. 3980-3981. DOI: 10.1007/s00167-017-4600-0
143. C.f.D. Control and Prevention, Anthropometry procedures manual. 2007, GA Atlanta. DOI:
144. N. Cameron, Essential anthropometry: Baseline anthropometric methods for human biologists in laboratory and field situations. Am J Hum Biol, 2013. 25(3): p. 291-9. DOI: 10.1002/ajhb.22388
145. J. Tresignie, A. Scafoglieri, E. Cattrysse, and J.P. Clarys, Cross-sectional content analysis of clinically applied circumferences. European Journal of Clinical Investigation, 2012. 42(9): p. 961-966. DOI: 10.1111/j.1365-2362.2012.02683.x
146. N. Miyatake, M. Miyachi, I. Tabata, N. Sakano, T. Hirao, and T. Numata, Relationship between muscle strength and anthropometric, body composition parameters in Japanese adolescents. Health, 2012. 04(01): p. 1-5. DOI: 10.4236/health.2012.41001
147. K. Bouillard, A. Nordez, P.W. Hodges, C. Cornu, and F. Hug, Evidence of changes in load sharing during isometric elbow flexion with ramped torque. J Biomech, 2012. 45(8): p. 1424-9. DOI: 10.1016/j.jbiomech.2012.02.020
148. L.A. Green and D.A. Gabriel, Anthropometrics and electromyography as predictors for maximal voluntary isometric arm strength. Journal of Sport and Health Science, 2012. 1(2): p. 107-113. DOI: 10.1016/j.jshs.2012.05.004
149. F. Hussain, M.R. Abdul Kadir, A.H. Zulkifly, A. Sa'at, A.A. Aziz, G. Hossain, T. Kamarul, and A. Syahrom, Anthropometric measurements of the human distal femur: a study of the adult Malay population. Biomed Res Int, 2013. 2013: p. 175056. DOI: 10.1155/2013/175056
150. B. Knechtle, P. Knechtle, I. Schulze, and G. Kohler, Upper arm circumference is associated with race performance in ultra-endurance runners. Br J Sports Med, 2008. 42(4): p. 295-9; discussion 299. DOI: 10.1136/bjsm.2007.038570
151. F. Lemma and P. Shetty, Seasonal variations in the relationship between mid-upper arm circumference and maximum voluntary contraction among Ethiopian farmers. Eur J Clin Nutr, 2009. 63(4): p. 513-20. DOI: 10.1038/sj.ejcn.1602966
152. J.A.R. Cannan and H.S. Hu, Automatic Circumference Measurement for Aiding in the Estimation of Maximum Voluntary Contraction (MVC) in EMG Systems. Intelligent Robotics and Applications, Pt I, 2011. 7101: p. 202-211. DOI: 10.1007/978-3-642-25486-4_21
153. K. Li, D.J. Hewson, J. Duchene, and J.Y. Hogrel, Predicting maximal grip strength using hand circumference. Manual Therapy, 2010. 15(6): p. 579-585. DOI: 10.1016/j.math.2010.06.010
154. O. Heimburger, A.R. Qureshi, W.S. Blaner, L. Berglund, and P. Stenvinkel, Hand-grip muscle strength, lean body mass, and plasma proteins as markers of nutritional status in patients with chronic renal failure close to start of dialysis therapy. American Journal of Kidney Diseases, 2000. 36(6): p. 1213-1225. DOI: 10.1053/ajkd.2000.19837
155. L. Shu, X.M. Tao, and D.D. Feng, A Wearable, Wireless Electronic Interface for Textile Sensors. 2010 Ieee International Symposium on Circuits and Systems, 2010: p. 3104-3107. DOI: 10.1109/ISCAS.2010.5537973
156. L. Shu, T. Hua, Y.Y. Wang, Q.A. Li, D.D. Feng, and X.M. Tao, In-Shoe Plantar Pressure Measurement and Analysis System Based on Fabric Pressure Sensing Array. Ieee Transactions on Information Technology in Biomedicine, 2010. 14(3): p. 767-775. DOI: 10.1109/Titb.2009.2038904
157. Y.Y. Wang, T. Hua, B. Zhu, Q. Li, W.J. Yi, and X.M. Tao, Novel fabric pressure sensors: design, fabrication, and characterization. Smart Materials and Structures, 2011. 20(6): p. 065015. DOI: 10.1088/0964-1726/20/6/065015
158. W.J. Yi, Y.Y. Wang, G.F. Wang, and X.M. Tao, Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polymer Testing, 2012. 31(5): p. 677-684. DOI: 10.1016/j.polymertesting.2012.03.006
159. Y. Li, X.Y. Cheng, M.Y. Leung, J. Tsang, X.M. Tao, and C.W.M. Yuen, A flexible strain sensor from polypyrrole-coated fabrics. Synthetic Metals, 2005. 155(1): p. 89-94. DOI: 10.1016/j.synthmet.2005.06.008
160. W.J. Yi, X.M. Tao, G.F. Wang, and Y.Y. Wang, Performance specifications and evaluation methods for fabric strain sensors. Proceedings of 2009 International Textile Science and Technology Forum, 2010: p. 75-80.
161. A.V. Hill, The Heat of Shortening and the Dynamic Constants of Muscle. Proceedings of the Royal Society B: Biological Sciences, 1938. 126(843): p. 136-195. DOI: 10.1098/rspb.1938.0050
162. A.F. Huxley, Muscle structure and theories of contraction. Prog Biophys Biophys Chem, 1957. 7: p. 255-318.
163. U. Stoecker, I.A. Telley, E. Stussi, and J. Denoth, A multisegmental cross-bridge kinetics model of the myofibril. Journal of Theoretical Biology, 2009. 259(4): p. 714-726. DOI: 10.1016/j.jtbi.2009.03.032
164. K.S. Campbell, Interactions between Connected Half-Sarcomeres Produce Emergent Mechanical Behavior in a Mathematical Model of Muscle. Plos Computational Biology, 2009. 5(11). DOI: ARTN e1000560 10.1371/journal.pcbi.1000560
165. M. Cadova, M. Vilimek, and M. Daniel, A comparative study of muscle force estimates using Huxley's and Hill's muscle model. Computer Methods in Biomechanics and Biomedical Engineering, 2014. 17(4): p. 311-317. DOI: 10.1080/10255842.2012.683426
166. W.O. Williams, Huxley's Model of Muscle Contraction with Compliance. Journal of Elasticity, 2011. 105(1-2): p. 365-380. DOI: 10.1007/s10659-011-9304-y
167. K.K. Lemaire, G.C. Baan, R.T. Jaspers, and A.J. van Soest, Comparison of the validity of Hill and Huxley muscle-tendon complex models using experimental data obtained from rat m. soleus in situ. Journal of Experimental Biology, 2016. 219(7): p. 977-987. DOI: 10.1242/jeb.128280
168. J.I. Mechanick, L. Sun, and M. Zaidi, Introduction to Molecular and Integrative Physiology of the Musculoskeletal System. Ann N Y Acad Sci, 2010. 1211: p. 1-2. DOI: 10.1111/j.1749-6632.2010.05815.x
169. V.H. Frankel, Biomechanics of the musculoskeletal system. Introduction. Arch Surg, 1973. 107(3): p. 405.
170. A.V. Hill, First and last experiments in muscle mechanics. 1970: Cambridge University Press. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1005788/
171. H.S. Gasser and A.V. Hill, The dynamics of muscular contraction. Proceedings of the Royal Society of London Series B-Containing Papers of a Biological Character, 1924. 96(678): p. 398-436. DOI: 10.1098/rspb.1924.0035
172. F.E. Zajac, How Musculotendon Architecture and Joint Geometry Affect the Capacity of Muscles to Move and Exert Force on Objects - a Review with Application to Arm and Forearm Tendon Transfer Design. Journal of Hand Surgery-American Volume, 1992. 17A(5): p. 799-804. DOI: 10.1016/0363-5023(92)90445-U
173. T.M. Winters, M. Takahashi, R.L. Lieber, and S.R. Ward, Whole muscle length-tension relationships are accurately modeled as scaled sarcomeres in rabbit hindlimb muscles. Journal of Biomechanics, 2011. 44(1): p. 109-115. DOI: 10.1016/j.jbiomech.2010.08.033
174. J.M. Winters, in Multiple muscle systems. 1990, Springer. p. 69-93.
175. T. Komura, Y. Shinagawa, and T.L. Kunii, Creating and retargetting motion by the musculoskeletal human body model. Visual Computer, 2000. 16(5): p. 254-270. DOI: 10.1007/s003719900065
176. D.T. Chen and D. Zeltzer, Pump It up - Computer Animation of a Biomechanically Based Model of Muscle Using the Finite-Element Method. Siggraph 92 : Conference Proceedings, 1992. 26: p. 89-98.
177. D.F. Haeufle, M. Gunther, A. Bayer, and S. Schmitt, Hill-type muscle model with serial damping and eccentric force-velocity relation. J Biomech, 2014. 47(6): p. 1531-6. DOI: 10.1016/j.jbiomech.2014.02.009
178. J.W. Ramsay, B.V. Hunter, and R.V. Gonzalez, Muscle moment arm and normalized moment contributions as reference data for musculoskeletal elbow and wrist joint models. J Biomech, 2009. 42(4): p. 463-73. DOI: 10.1016/j.jbiomech.2008.11.035
179. A. Rahikainen, J. Avela, and M. Virmavirta, Modeling the Force-Velocity Relationship in Arm. World Journal of Mechanics, 2012. 02(02): p. 90-97. DOI: 10.4236/wjm.2012.22011
180. E. Pennestri, R. Stefanelli, P.P. Valentini, and L. Vita, Virtual musculo-skeletal model for the biomechanical analysis of the upper limb. J Biomech, 2007. 40(6): p. 1350-61. DOI: 10.1016/j.jbiomech.2006.05.013
181. A. Erdemir, S. McLean, W. Herzog, and A.J. van den Bogert, Model-based estimation of muscle forces exerted during movements. Clin Biomech (Bristol, Avon), 2007. 22(2): p. 131-54. DOI: 10.1016/j.clinbiomech.2006.09.005
182. P. Gerus, G. Rao, and E. Berton, Subject-specific tendon-aponeurosis definition in Hill-type model predicts higher muscle forces in dynamic tasks. PLoS One, 2012. 7(8): p. e44406. DOI: 10.1371/journal.pone.0044406
183. F.C. Anderson and M.G. Pandy, Individual muscle contributions to support in normal walking. Gait Posture, 2003. 17(2): p. 159-69. DOI: 10.1016/S0966-6362(02)00073-5
184. D.G. Thelen, F.C. Anderson, and S.L. Delp, Generating dynamic simulations of movement using computed muscle control. Journal of Biomechanics, 2003. 36(3): p. 321-328. DOI: 10.1016/S0021-9290(02)00432-3
185. M.D. Fox, J.A. Reinbolt, S. Ounpuu, and S.L. Delp, Mechanisms of improved knee flexion after rectus femoris transfer surgery. Journal of Biomechanics, 2009. 42(5): p. 614-619. DOI: 10.1016/j.jbiomech.2008.12.007
186. S.R. Hamner, A. Seth, and S.L. Delp, Muscle contributions to propulsion and support during running. Journal of Biomechanics, 2010. 43(14): p. 2709-2716. DOI: 10.1016/j.jbiomech.2010.06.025
187. S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, and D.G. Thelen, OpenSim: open-source software to create and analyze dynamic Simulations of movement. Ieee Transactions on Biomedical Engineering, 2007. 54(11): p. 1940-1950. DOI: 10.1109/Tbme.2007.901024
188. A.L. Hall, C.L. Peterson, S.A. Kautz, and R.R. Neptune, Relationships between muscle contributions to walking subtasks and functional walking status in persons with post-stroke hemiparesis. Clinical Biomechanics, 2011. 26(5): p. 509-515. DOI: 10.1016/j.clinbiomech.2010.12.010
189. C.L. Peterson, S.A. Kautz, and R.R. Neptune, Muscle work is increased in pre-swing during hemiparetic walking. Clinical Biomechanics, 2011. 26(8): p. 859-866. DOI: 10.1016/j.clinbiomech.2011.04.010
190. T.K. Rupp, W. Ehlers, N. Karajan, M. Gunther, and S. Schmitt, A forward dynamics simulation of human lumbar spine flexion predicting the load sharing of intervertebral discs, ligaments, and muscles. Biomechanics and Modeling in Mechanobiology, 2015. 14(5): p. 1081-1105. DOI: 10.1007/s10237-015-0656-2
191. A.A. Biewener, J.M. Wakeling, S.S. Lee, and A.S. Arnold, Validation of Hill-Type Muscle Models in Relation to Neuromuscular Recruitment and Force-Velocity Properties: Predicting Patterns of In Vivo Muscle Force. Integrative and Comparative Biology, 2014. 54(6): p. 1072-1083. DOI: 10.1093/icb/icu070
192. H.E. Huxley, Fifty years of muscle and the sliding filament hypothesis. European Journal of Biochemistry, 2004. 271(8): p. 1403-1415. DOI: 10.1111/j.1432-1033.2004.04044.x
193. V. Lombardi, G. Piazzesi, M. Reconditi, M. Linari, L. Lucii, A. Stewart, Y.B. Sun, P. Boesecke, T. Narayanan, T. Irving, and M. Irving, X-ray diffraction studies of the contractile mechanism in single muscle fibres. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2004. 359(1452): p. 1883-1893. DOI: 10.1098/rstb.2004.1557
194. I.A. Telley, J. Denoth, and K.W. Ranatunga, Inter-sarcomere dynamics in muscle fibres - A neglected subject ? Molecular and Cellular Aspects of Muscle Contraction, 2003. 538: p. 481-500. URL: https://www.ncbi.nlm.nih.gov/pubmed/15098693
195. L. Tskhovrebova and J. Trinick, Role of titin in vertebrate striated muscle. Philosophical Transactions of the Royal Society B-Biological Sciences, 2002. 357(1418): p. 199-206. DOI: 10.1098/rstb.2001.1028
196. A.F. Huxley, Mechanics and models of the myosin motor. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 2000. 355(1396): p. 433-440. DOI: 10.1098/rstb.2000.0584
197. M. Gunther and S. Schmitt, A macroscopic ansatz to deduce the Hill relation. Journal of Theoretical Biology, 2010. 263(4): p. 407-418. DOI: 10.1016/j.jtbi.2009.12.027
198. D.F.B. Haeufle, M. Gunther, R. Blickhan, and S. Schmitt, Proof of concept of an artificial muscle: theoretical model, numerical model, and hardware experiment. 2011 Ieee International Conference on Rehabilitation Robotics (Icorr), 2011.
199. D.F.B. Haeufle, M. Gunther, R. Blickhan, and S. Schmitt, Proof of concept: Model based bionic muscle with hyperbolic force-velocity relation. Applied Bionics and Biomechanics, 2012. 9(3): p. 267-274. DOI: 10.3233/Abb-2011-0052
200. S. Schmitt, D.F.B. Haeufle, R. Blickhan, and M. Gunther, Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle. Bioinspiration & Biomimetics, 2012. 7(3). DOI: Artn 036022 10.1088/1748-3182/7/3/036022
201. A. Rajagopal, C.L. Dembia, M.S. DeMers, D.D. Delp, J.L. Hicks, and S.L. Delp, Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. Ieee Transactions on Biomedical Engineering, 2016. 63(10): p. 2068-2079. DOI: 10.1109/Tbme.2016.2586891
202. E.J. Perreault, C.J. Heckman, and T.G. Sandercock, Hill muscle model errors during movement are greatest within the physiologically relevant range of motor unit firing rates. Journal of Biomechanics, 2003. 36(2): p. 211-218. DOI: 10.1016/S0021-9290(02)00332-9
203. S.S. Blemker and S.L. Delp, Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. Journal of Biomechanics, 2006. 39(8): p. 1383-1391. DOI: 10.1016/j.jbiomech.2005.04.012
204. M. Millard, T. Uchida, A. Seth, and S.L. Delp, Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics. Journal of Biomechanical Engineering-Transactions of the Asme, 2013. 135(2). DOI: Artn 021005 10.1115/1.4023390
205. G.G. Handsfield, C.H. Meyer, J.M. Hart, M.F. Abel, and S.S. Blemker, Relationships of 35 lower limb muscles to height and body mass quantified using MRI. Journal of Biomechanics, 2014. 47(3): p. 631-638. DOI: 10.1016/j.jbiomech.2013.12.002
206. O.M. Blake and J.M. Wakeling, Early deactivation of slower muscle fibres at high movement frequencies. Journal of Experimental Biology, 2014. 217(19): p. 3528-3534. DOI: 10.1242/jeb.108266
207. J.M. Wakeling and T. Horn, Neuromechanics of Muscle Synergies During Cycling. Journal of Neurophysiology, 2009. 101(2): p. 843-854. DOI: 10.1152/jn.90679.2008
208. S.S.M. Lee, M.D. Miara, A.S. Arnold, A.A. Biewener, and J.M. Wakeling, Recruitment of faster motor units is associated with greater rates of fascicle strain and rapid changes in muscle force during locomotion. Journal of Experimental Biology, 2013. 216(2): p. 198-207. DOI: 10.1242/jeb.072637
209. M. Bernabei, J.H. van Dieen, G.C. Baan, and H. Maas, Significant mechanical interactions at physiological lengths and relative positions of rat plantar flexors. Journal of Applied Physiology, 2015. 118(4): p. 427-436. DOI: 10.1152/japplphysiol.00703.2014
210. L. Reinhardt, T. Siebert, K. Leichsenring, R. Blickhan, and M. Bol, Intermuscular pressure between synergistic muscles correlates with muscle force. Journal of Experimental Biology, 2016. 219(15): p. 2311-2319. DOI: 10.1242/jeb.135566
211. J.J. Knapik, J.E. Wright, R.H. Mawdsley, and J. Braun, Isometric, isotonic, and isokinetic torque variations in four muscle groups through a range of joint motion. Physical Therapy, 1983. 63(6): p. 938-947. DOI: 10.1093/ptj/63.6.938
212. M.A. Anderson, J.H. Gieck, D. Perrin, A. Weltman, R. Rutt, and C. Denegar, The relationships among isometric, isotonic, and isokinetic concentric and eccentric quadriceps and hamstring force and three components of athletic performance. Journal of Orthopaedic & Sports Physical Therapy, 1991. 14(3): p. 114-120. DOI: 10.2519/jospt.1991.14.3.114
213. L.M. Alegre, A. Ferri-Morales, R. Rodriguez-Casares, and X. Aguado, Effects of isometric training on the knee extensor moment-angle relationship and vastus lateralis muscle architecture. European Journal of Applied Physiology, 2014. 114(11): p. 2437-2446. DOI: 10.1007/s00421-014-2967-x
214. M. Noorkoiv, K. Nosaka, and A.J. Blazevich, Effects of isometric quadriceps strength training at different muscle lengths on dynamic torque production. Journal of Sports Sciences, 2015. 33(18): p. 1952-1961. DOI: 10.1080/02640414.2015.1020843
215. R.C. Melo, A.C.M. Takahashi, R.J. Quiterio, T.F. Salvini, and A.M. Catai, Eccentric Torque-Producing Capacity Is Influenced by Muscle Length in Older Healthy Adults. Journal of Strength and Conditioning Research, 2016. 30(1): p. 259-266. DOI: 10.1519/Jsc.0000000000001047
216. N.A. Tillin, M.T.G. Pain, and J.P. Folland, Contraction type influences the human ability to use the available torque capacity of skeletal muscle during explosive efforts. Proceedings of the Royal Society B-Biological Sciences, 2012. 279(1736): p. 2106-2115. DOI: 10.1098/rspb.2011.2109
217. O.S. Andersen, 50-year anniversary of sliding filament. Journal of General Physiology, 2004. 123(6): p. 629-629. DOI: 10.1085/jgp.200409079
218. S. Nimphius, M.R. McGuigan, and R.U. Newton, Changes in Muscle Architecture and Performance during a Competitive Season in Female Softball Players. Journal of Strength and Conditioning Research, 2012. 26(10): p. 2655-2666. DOI: 10.1519/JSC.0b013e318269f81e
219. B.M. Baroni, J.M. Geremia, R. Rodrigues, R.D. Franke, K. Karamanidis, and M.A. Vaz, Muscle Architecture Adaptations to Knee Extensor Eccentric Training: Rectus Femoris Vs. Vastus Lateralis. Muscle & Nerve, 2013. 48(4): p. 498-506. DOI: 10.1002/mus.23785
220. T.C. Scanlon, M.S. Fragala, J.R. Stout, N.S. Emerson, K.S. Beyer, L.P. Oliveira, and J.R. Hoffman, Muscle Architecture and Strength: Adaptations to Short- Term Resistance Training in Older Adults. Muscle & Nerve, 2014. 49(4): p. 584-592. DOI: 10.1002/mus.23969
221. C. Rode, T. Siebert, A. Tomalka, and R. Blickhan, Myosin filament sliding through the Z-disc relates striated muscle fibre structure to function. Proceedings of the Royal Society B-Biological Sciences, 2016. 283(1826). DOI: Artn 20153030 10.1098/Rspb.2015.3030
222. T. Driss, H. Vandewalle, J.M. Le Chevalier, and H. Monod, Force-velocity relationship on a cycle ergometer and knee-extensor strength indices. Can J Appl Physiol, 2002. 27(3): p. 250-62. DOI: 10.1139/h02-015
223. P.T. Nikolaidis, Age- and Sex-Related Differences in Force-Velocity Characteristics of Upper and Lower Limbs of Competitive Adolescent Swimmers. Journal of Human Kinetics, 2012. 32: p. 87-95. DOI: 10.2478/v10078-012-0026-4
224. H. Jaafar, E. Attiogbe, M. Rouis, H. Vandewalle, and T. Driss, Reliability of Force-Velocity Tests in Cycling and Cranking Exercises in Men and Women. Biomed Res Int, 2015. 2015: p. 954780. DOI: 10.1155/2015/954780
225. I. Cuk, M. Markovic, A. Nedeljkovic, D. Ugarkovic, M. Kukolj, and S. Jaric, Force-velocity relationship of leg extensors obtained from loaded and unloaded vertical jumps. European Journal of Applied Physiology, 2014. 114(8): p. 1703-1714. DOI: 10.1007/s00421-014-2901-2
226. D. Feeney, S.J. Stanhope, T.W. Kaminski, A. Machi, and S. Jaric, Loaded Vertical Jumping: Force-Velocity Relationship, Work, and Power. J Appl Biomech, 2016. 32(2): p. 120-7. DOI: 10.1123/jab.2015-0136
227. A. Garcia-Ramos, S. Jaric, P. Padial, and B. Feriche, Force-Velocity Relationship of Upper Body Muscles: Traditional Versus Ballistic Bench Press. J Appl Biomech, 2016. 32(2): p. 178-85. DOI: 10.1123/jab.2015-0162
228. G. Rabita, S. Dorel, J. Slawinski, E. Saez-de-Villarreal, A. Couturier, P. Samozino, and J.B. Morin, Sprint mechanics in world-class athletes: a new insight into the limits of human locomotion. Scand J Med Sci Sports, 2015. 25(5): p. 583-94. DOI: 10.1111/sms.12389
229. H. Vandewalle, G. Peres, J. Heller, J. Panel, and H. Monod, Force-velocity relationship and maximal power on a cycle ergometer. Correlation with the height of a vertical jump. Eur J Appl Physiol, 1987. 56(6): p. 650-6. URL: https://link.springer.com/article/10.1007/BF00424805
230. A. Jaskolska, P. Goossens, B. Veenstra, A. Jaskolski, and J.S. Skinner, Comparison of treadmill and cycle ergometer measurements of force-velocity relationships and power output. International Journal of Sports Medicine, 1999. 20(3): p. 192-197. DOI: 10.1055/s-2007-971116
231. J.B. Morin, P. Samozino, R. Bonnefoy, P. Edouard, and A. Belli, Direct measurement of power during one single sprint on treadmill. Journal of Biomechanics, 2010. 43(10): p. 1970-1975. DOI: 10.1016/j.jbiomech.2010.03.012
232. J. Yamauchi, C. Mishima, S. Nakayama, and N. Ishii, Force-velocity, force-power relationships of bilateral and unilateral leg multi-joint movements in young and elderly women. Journal of Biomechanics, 2009. 42(13): p. 2151-7. DOI: 10.1016/j.jbiomech.2009.05.032
233. P. Samozino, E. Rejc, P.E. Di Prampero, A. Belli, and J.B. Morin, Optimal force-velocity profile in ballistic movements--altius: citius or fortius? Medicine & Science in Sports & Exercise, 2012. 44(2): p. 313-22. DOI: 10.1249/MSS.0b013e31822d757a
234. P. Samozino, E. Rejc, P.E. di Prampero, A. Belli, and J.B. Morin, Force-velocity properties' contribution to bilateral deficit during ballistic push-off. Medicine & Science in Sports & Exercise, 2014. 46(1): p. 107-14. DOI: 10.1249/MSS.0b013e3182a124fb
235. S. Sreckovic, I. Cuk, S. Djuric, A. Nedeljkovic, D. Mirkov, and S. Jaric, Evaluation of force-velocity and power-velocity relationship of arm muscles. European Journal of Applied Physiology, 2015. 115(8): p. 1779-1787. DOI: 10.1007/s00421-015-3165-1
236. P. Samozino, P. Edouard, S. Sangnier, M. Brughelli, P. Gimenez, and J.B. Morin, Force-Velocity Profile: Imbalance Determination and Effect on Lower Limb Ballistic Performance. International Journal of Sports Medicine, 2014. 35(6): p. 505-510. DOI: 10.1055/s-0033-1354382
237. P. Jimenez-Reyes, P. Samozino, V. Cuadrado-Penafiel, F. Conceicao, J.J. Gonzalez-Badillo, and J.B. Morin, Effect of countermovement on power-force-velocity profile. European Journal of Applied Physiology, 2014. 114(11): p. 2281-2288. DOI: 10.1007/s00421-014-2947-1
238. H. Hauraix, S. Dorel, G. Rabita, G. Guilhem, and A. Nordez, Muscle fascicle shortening behaviour of vastus lateralis during a maximal force-velocity test. European Journal of Applied Physiology, 2017. 117(2): p. 289-299. DOI: 10.1007/s00421-016-3518-4
239. S. Jaric, Force-velocity Relationship of Muscles Performing Multi-joint Maximum Performance Tasks. International Journal of Sports Medicine, 2015. 36(9): p. 699-704. DOI: 10.1055/s-0035-1547283
240. M.F. Bobbert, Why is the force-velocity relationship in leg press tasks quasi-linear rather than hyperbolic? Journal of Applied Physiology, 2012. 112(12): p. 1975-1983. DOI: 10.1152/japplphysiol.00787.2011
241. J.M. Sheppard, S. Cormack, K.L. Taylor, M.R. McGuigan, and R.U. Newton, Assessing the Force-Velocity Characteristics of the Leg Extensors in Well-Trained Athletes: The Incremental Load Power Profile. Journal of Strength and Conditioning Research, 2008. 22(4): p. 1320-1326. DOI: 10.1519/JSC.0b013e31816d671b
242. A. García-Ramos, S. Jaric, P. Padial, and B. Feriche, Force–velocity relationship of upper body muscles: traditional versus ballistic bench press. Journal of applied biomechanics, 2016. 32(2): p. 178-185. DOI: 10.1123/jab.2015-0162
243. R.C. Sprague, J.C. Martin, C.J. Davidson, and R.P. Farrar, Force-velocity and power-velocity relationships during maximal short-term rowing ergometry. Medicine and Science in Sports and Exercise, 2007. 39(2): p. 358-364. DOI: 10.1249/01.mss.0000241653.37876.73
244. D. Hahn, W. Herzog, and A. Schwirtz, Interdependence of torque, joint angle, angular velocity and muscle action during human multi-joint leg extension. European Journal of Applied Physiology, 2014. 114(8): p. 1691-1702. DOI: 10.1007/s00421-014-2899-5
245. D.G. Behm and D.G. Sale, Intended Rather Than Actual Movement Velocity Determines Velocity-Specific Training Response. Journal of Applied Physiology, 1993. 74(1): p. 359-368. DOI: 10.1152/jappl.1993.74.1.359
246. D.M. Frost, S. Bronson, J.B. Cronin, and R.U. Newton, Changes in maximal strength, velocity, and power after 8 weeks of training with pneumatic or free weight resistance. The Journal of Strength & Conditioning Research, 2016. 30(4): p. 934-944. DOI: 10.1519/JSC.0000000000001179
247. M. Riviere, L. Louit, A. Strokosch, and L.B. Seitz, Variable Resistance Training Promotes Greater Strength and Power Adaptations Than Traditional Resistance Training in Elite Youth Rugby League Players. Journal of Strength and Conditioning Research, 2017. 31(4): p. 947-955. DOI: 10.1519/Jsc.0000000000001574
248. R. Formon, L.E. Ford, and E.H. Sonnenblick, Effect of muscle length on the force-velocity relationship of tetanized cardiac muscle. Circulation research, 1972. 31(2): p. 195-206. DOI: 10.1161/01.RES.31.2.195
249. C.d. Ruiter, W. Didden, D. Jones, and A.d. Haan, The force‐velocity relationship of human adductor pollicis muscle during stretch and the effects of fatigue. The Journal of Physiology, 2000. 526(3): p. 671-681. DOI: 10.1111/j.1469-7793.2000.00671.x
250. S. Sprager and M.B. Juric, Inertial Sensor-Based Gait Recognition: A Review. Sensors (Basel), 2015. 15(9): p. 22089-127. DOI: 10.3390/s150922089
251. N.U. Ahamed, K. Sundaraj, B. Ahmad, M. Rahman, M.A. Ali, M.A. Islam, and R. Palaniappan, Rehabilitation systems for physically disabled patients: A brief review of sensor-based computerised signal-monitoring systems. Biomedical Research-India, 2013. 24(3): p. 370-376.
252. A. Ali, K. Sundaraj, B. Ahmad, N. Ahamed, and A. Islam, Gait disorder rehabilitation using vision and non-vision based sensors: A systematic review. Bosnian Journal of Basic Medical Sciences, 2012. 12(3): p. 193-202. DOI: 10.17305/bjbms.2012.2484
253. A. Reiss, G. Hendeby, G. Bleser, and D. Stricker, Activity Recognition Using Biomechanical Model Based Pose Estimation. Smart Sensing and Context, 2010. 6446: p. 42-55. DOI: 10.1007/978-3-642-16982-3_4
254. Y.-C. Du, C.-B. Shih, S.-C. Fan, H.-T. Lin, and P.-J. Chen, An IMU-compensated skeletal tracking system using Kinect for the upper limb. Microsystem Technologies, 2018. DOI: 10.1007/s00542-018-3769-6
255. A. Tognetti, F. Lorussi, N. Carbonaro, and D. de Rossi, Wearable Goniometer and Accelerometer Sensory Fusion for Knee Joint Angle Measurement in Daily Life. Sensors, 2015. 15(11): p. 28435-28455. DOI: 10.3390/s151128435
256. C. Chen, R. Jafari, and N. Kehtarnavaz, A survey of depth and inertial sensor fusion for human action recognition. Multimedia Tools and Applications, 2017. 76(3): p. 4405-4425. DOI: 10.1007/s11042-015-3177-1
257. D. Roetenberg, H.J. Luinge, C.T. Baten, and P.H. Veltink, Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation. IEEE Trans Neural Syst Rehabil Eng, 2005. 13(3): p. 395-405. DOI: 10.1109/TNSRE.2005.847353
258. A.M. Sabatini, Estimating three-dimensional orientation of human body parts by inertial/magnetic sensing. Sensors (Basel), 2011. 11(2): p. 1489-525. DOI: 10.3390/s110201489
259. H. Dejnabadi, B.M. Jolles, and K. Aminian, A new approach to accurate measurement of uniaxial joint angles based on a combination of accelerometers and gyroscopes. IEEE Trans Biomed Eng, 2005. 52(8): p. 1478-84. DOI: 10.1109/TBME.2005.851475
260. D. Roetenberg, P.J. Slycke, and P.H. Veltink, Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Trans Biomed Eng, 2007. 54(5): p. 883-90. DOI: 10.1109/TBME.2006.889184
261. H.J. Luinge, P.H. Veltink, and C.T. Baten, Ambulatory measurement of arm orientation. J Biomech, 2007. 40(1): p. 78-85. DOI: 10.1016/j.jbiomech.2005.11.011
262. M. Khademi, H.M. Hondori, L. Dodakian, S. Cramer, and C.V. Lopes, Comparing "pick and place" task in spatial Augmented Reality versus non-immersive Virtual Reality for rehabilitation setting. Conf Proc IEEE Eng Med Biol Soc, 2013. 2013: p. 4613-6. DOI: 10.1109/EMBC.2013.6610575
263. Y.Q. Tao and H.S. Hu, Colour based human motion tracking for home-based rehabilitation. 2004 Ieee International Conference on Systems, Man & Cybernetics, Vols 1-7, 2004: p. 773-778.
264. A. Mobini, S. Behzadipour, and M. Saadat Foumani, Accuracy of Kinect's skeleton tracking for upper body rehabilitation applications. Disabil Rehabil Assist Technol, 2014. 9(4): p. 344-52. DOI: 10.3109/17483107.2013.805825
265. R. Paradiso and D. De Rossi. Advances in textile sensing and actuation for e-textile applications. in Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. 2008. IEEE. URL: http://ieeexplore.ieee.org/abstract/document/4649993/
266. M. Hamedi, R. Forchheimer, and O. Inganas, Towards woven logic from organic electronic fibres. Nature Materials, 2007. 6(5): p. 357-362. DOI: 10.1038/nmat1884
267. T. Giorgino, P. Tormene, F. Lorussi, D. De Rossi, and S. Quaglini, Sensor evaluation for wearable strain gauges in neuro