Effect of Surface-Modification on In Vitro Corrosion of Biodegradable Magnesium-Based Helical Stent Fabricated by Photo-chemical Etching

Main Article Content

BSPK Kandala G Zhang X An S Pixley Vesselin Shanov

Abstract

During the last decade, magnesium and its alloys have been extensively studied to develop a new generation of biodegradable medical implants. The fast degradation rate of pure magnesium and related alloys in the physiological environment poses significant challenges to devices made of these materials for biomedical applications. In this study we have designed and fabricated biodegradable helical stents made of AZ31 magnesium alloy, and have explored their in vitro corrosion behavior in Dulbecco's Modified Eagle's Medium (DMEM). The corrosion rate was significantly reduced by surface modifications of the helical stent, achieved through applying a biocompatible Parylene C polymer coating, or via appropriate chemical etching of the devices in inorganic solutions. The corrosion rates of the coated AZ31 Mg helical stents were compared with uncoated samples used as a control. The results achieved indicated that all tested surface modifications successfully inhibited metal corrosion rates in vitro. Materials coated with Parylene C coating revealed a maximum corrosion rate reduction of 70% to 85% in DMEM solution.

Article Details

How to Cite
KANDALA, BSPK et al. Effect of Surface-Modification on In Vitro Corrosion of Biodegradable Magnesium-Based Helical Stent Fabricated by Photo-chemical Etching. Medical Research Archives, [S.l.], v. 8, n. 3, mar. 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2067>. Date accessed: 19 may 2024. doi: https://doi.org/10.18103/mra.v8i3.2067.
Section
Research Articles

References

1. AL-Mangour B, Mongrain R, Yue S. Coronary Stents Fracture: An Engineering Approach (Review). Mater Sci Appl. 2013;04(10):606-621. doi:10.4236/msa.2013.410075
2. Bedoya J, Meyer CA, Timmins LH, Moreno MR, Moore JE. Effects of Stent Design Parameters on Normal Artery Wall Mechanics. J Biomech Eng. 2006;128(5):757. doi:10.1115/1.2246236
3. Kastrati A, Mehilli J, Dirschinger J, et al. Restenosis after coronary placement of various stent types. Am J Cardiol. 2001;87(1):34-39. doi:10.1016/S0002-9149(00)01268-6
4. Walker J, Shadanbaz S, Kirkland NT, et al. Magnesium alloys: Predicting in vivo corrosion with in vitro immersion testing. J Biomed Mater Res - Part B Appl Biomater. 2012;100 B(4):1134-1141. doi:10.1002/jbm.b.32680
5. Witte F, Hort N, Feyerabend F, Vogt C. Corrosion of Magnesium Alloys. In: Corrosion of Magnesium Alloys , (Ed: G. Song ), Woodhead , Philadelphia, PA, USA 2011. ; 2008:403.
6. Xin Y, Hu T, Chu PK. In vitro studies of biomedical magnesium alloys in a simulated physiological environment: A review. Acta Biomater. 2011;7(4):1452-1459. doi:10.1016/j.actbio.2010.12.004
7. Vormann J. Magnesium: Nutrition and metabolism. Mol Aspects Med. 2003;24(1-3):27-37. doi:10.1016/S0098-2997(02)00089-4
8. Zeng R, Dietzel W, Witte F, Hort N, Blawert C. Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater. 2008;10(8):3-14. doi:10.1002/adem.200800035
9. Frazin LJ, Lanza G, Vonesh M, et al. Functional chiral asymmetry in descending thoracic aorta. Circulation. 1990;82(6):1985-1994. doi:10.1161/01.CIR.82.6.1985
10. Stonebridge PA, Brophy CM. Spiral laminar flow in arteries ? Erythropoietin and spontaneous platelet aggregation in haemodialysis patients. Lancet. 1991;338:1360-1361.
11. SEGADAL L, MATRE K. Blood velocity distribution in the human ascending aorta. 2000:2000.
12. T K, HL G, M M, S M, Y S. Flow patterns in vessels of simple and complex geometries. In: Leonard EF, Turitto VT, Vroman L, eds. Blood in contact with natural and artificial surfaces. In: New York: Academy Press,. ; 1987:422-441.
13. Caro CG, Seneviratne A, Heraty KB, et al. Intimal hyperplasia following implantation of helical-centreline and straight-centreline stents in common carotid arteries in healthy pigs: Influence of intraluminal flow. J R Soc Interface. 2013;10(89):1-8. doi:10.1098/rsif.2013.0578
14. Zeller T, Gaines PA, Ansel GM, Caro CG. Helical centerline stent improves patency: Two-year results from the randomized mimics trial. Circ Cardiovasc Interv. 2016;9(6):1-8. doi:10.1161/CIRCINTERVENTIONS.115.002930
15. Wholey MH, Finol EA. Designing the ideal stent. In: Endovascular Today. ; 2007:25–34.
16. Koo Y, Tiasha T, Shanov VN, Yun Y. Expandable Mg-based Helical Stent Assessment using Static, Dynamic, and Porcine Ex Vivo Models. Sci Rep. 2017;7(1):1-10. doi:10.1038/s41598-017-01214-4
17. Kandala BSPK, Zhang G, Hopkins TM, An X, Pixley SK, Shanov V. In vitro and in vivo testing of zinc as a biodegradable material for stents fabricated by photo-chemical etching. Appl Sci. 2019;9(21). doi:10.3390/app9214503
18. Shanov VN, Roy-Chaudhury P, Schulz M, Yin Z, Campos-Naciff B, Wang Y. Making Magnesium Biodegradable Stent for Medical Implant Applications, US Patent 9,655,752, May 23, 2017. 2013;(12).
19. Ye SH, Chen Y, Mao Z, et al. Biodegradable Zwitterionic Polymer Coatings for Magnesium Alloy Stents. Langmuir. 2019;35(5):1421-1429. doi:10.1021/acs.langmuir.8b01623
20. Coyan GN, D’Amore A, Matsumura Y, et al. In vivo functional assessment of a novel degradable metal and elastomeric scaffold-based tissue engineered heart valve. J Thorac Cardiovasc Surg. 2019;157(5):1809-1816. doi:10.1016/j.jtcvs.2018.09.128
21. Gu X, Mao Z, Ye S-H, et al. Biodegradable, elastomeric coatings with controlled anti-proliferative agent release for magnesium-based cardiovascular stents. Colloids Surf B Biointerfaces. 2016;144:170-179. doi:10.1016/j.colsurfb.2016.03.086
22. D E, McBRIDE MD. ABSORBABLE METAL IN BONE SURGERY. J Am Med Assoc. 1938;278(Dec 31).
23. VV T, DN T. The resorbing metallic alloy ‘Osteosinthezit’ as material for fastening broken bone. Khirurgiia 1944. 8:41–4.
24. Witte F, Kaese V, Haferkamp H, et al. In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials. 2005;26(17):3557-3563. doi:10.1016/j.biomaterials.2004.09.049
25. Wang J, Giridharan V, Shanov V, et al. Flow-induced corrosion behavior of absorbable magnesium-based stents. Acta Biomater. 2014;10(12):5213-5223. doi:10.1016/j.actbio.2014.08.034
26. Kahouli A, Sylvestre A, Ortega L, et al. Structural and dielectric study of parylene C thin films. Appl Phys Lett. 2009;94(15). doi:10.1063/1.3114404
27. Cieślik M, Engvall K, Pan J, Kotarba A. Silane-parylene coating for improving corrosion resistance of stainless steel 316L implant material. Corros Sci. 2011;53(1):296-301. doi:10.1016/j.corsci.2010.09.034
28. Spiro RG. Studies on Fetuin, a Glycoprotein of Fetal Serum. J Biol Chem. 1960;235(10):2860-2869.
29. International standard ISO 8407. ISO 10993-12.; 2009.
30. Liu L, Meng Y, Dong C, Yan Y, Volinsky AA, Wang LN. Initial formation of corrosion products on pure zinc in simulated body fluid. J Mater Sci Technol. 2018;34(12):2271-2282. doi:10.1016/j.jmst.2018.05.005
31. ASTM. Standard Practice for Laboratory Immersion Corrosion Testing of Metals. In: Annual Book of ASTM Standards, Philadelphia, PA, 2011. ASTM International; 2011:2011.
32. Ibrahim H, Klarner AD, Poorganji B, Dean D, Luo AA, Elahinia M. Microstructural, mechanical and corrosion characteristics of heat-treated Mg-1.2Zn-0.5Ca (wt%) alloy for use as resorbable bone fixation material. J Mech Behav Biomed Mater. 2017;69(January):203-212. doi:10.1016/j.jmbbm.2017.01.005
33. Chromy V, Svoboda V, Stepanova I. Spectrophotometric in Biological Determination Fluids with Xylidyl of Magnesium. Biochem Med. 1973;217:208-217.
34. Surmeneva MA, Vladescu A, Cotrut CM, et al. Effect of parylene C coating on the antibiocorrosive and mechanical properties of different magnesium alloys. Appl Surf Sci. 2018;427:617-627. doi:10.1016/j.apsusc.2017.08.066
35. Lee T, Lee J, Park C. Characterization of parylene deposition process for the passivation of organic light emitting diodes. Korean J Chem Eng. 2002;19(4):722-727. doi:10.1007/BF02699324
36. Bera M, Rivaton A, Gandon C, Gardette JL. Comparison of the photodegradation of parylene C and parylene N. Eur Polym J. 2000;36(9):1765-1777. doi:10.1016/S0014-3057(99)00259-1
37. Song JS, Lee S, Jung SH, Cha GC, Mun MS. Improved Biocompatibility of Parylene-C Films Prepared by Chemical Vapor Deposition and the Subsequent Plasma Treatment. J Appl Polym Sci. 2010;116(5):2658-2667. doi:10.1002/app
38. Balss KM, Llanos G, Papandreou G, Maryanoff CA. Quantitative spatial distribution of sirolimus and polymers in drug-eluting stents using confocal Raman microscopy. J Biomed Mater Res - Part A. 2008;85(1):258-270. doi:10.1002/jbm.a.31535
39. Mathur MS, Weir A. Laser Raman and Infrared Spectrum of Poly-p-Xylylene. J Mol Struct. 1973;15:459-463.
40. Xin Y, Huo K, Hu T, Tang G, Chu PK. Corrosion products on biomedical magnesium alloy soaked in simulated body fluids. J Mater Res. 2009;24(8):2711-2719. doi:10.1557/jmr.2009.0323