The cardiovascular implications of COVID-19: A Comprehensive Review 

Main Article Content

Shumail Fatima Syed Bukhari John Pacella

Abstract

The coronavirus disease of 2019 (COVID-19) is a global medical crisis that has posed immense challenges to the medical fraternity worldwide. COVID-19 is caused by Severe Acute Respiratory Syndrome - Corona Virus - 2 (SARS-CoV-2) that targets the host’s Angiotensin Converting Enzyme -2 (ACE2) receptors present in the lungs, heart, blood vessels, kidneys and intestines. Symptoms are primarily respiratory in origin but the disease has the propensity to involve all organ systems quickly to cause multi-organ failure and death. The patients with pre-existing cardiovascular diseases are more prone to contracting infection, and the involvement of cardiovascular system itself has been linked to increased morbidity and mortality in COVID-19 patients. Therefore, learning about the cardiovascular implications of SARS-CoV-2 infection is of paramount importance for the cardiology world at this juncture. Herein, we review the initial literature relevant to SARS-CoV-2 associated cardiovascular pathology, highlighting cardiac manifestations, biomarker utility and therapeutic landscape in the present era of COVID-19. 


 

Article Details

How to Cite
FATIMA, Shumail; BUKHARI, Syed; PACELLA, John. The cardiovascular implications of COVID-19: A Comprehensive Review . Medical Research Archives, [S.l.], v. 8, n. 5, may 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2140>. Date accessed: 22 dec. 2024. doi: https://doi.org/10.18103/mra.v8i5.2140.
Section
Review Articles

References

1. First Covid-19 case happened in November; China government records show - report | World news | The Guardian.https://www.theguardian.com/world/2020/mar/13/first-covid-19-case-happened-in-november-china-government-records-show-report.

2. World Health Organization. WHO Director-General's opening remarks at the media briefing on COVID-19 - 11 March 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020. Accessed March 11, 2020.

3. Home. Johns Hopkins Coronavirus Resource Center.
https://coronavirus.jhu.edu/

4. Zheng Y-Y, Ma Y-T, Zhang J-Y, Xie X. COVID-19 and the cardiovascular system. Nature Reviews Cardiology. 2020;17(5):259-260. doi:10.1038/s41569-020-0360-5

5. Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. The Lancet. 2020;395(10223):497-506. doi:10.1016/s0140-6736(20)30183-5

6. Bai Y, Yao L, Wei T, et al. Presumed Asymptomatic Carrier Transmission of COVID-19. Jama. 2020;323(14):1406. doi:10.1001/jama.2020.2565

7. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet. 2020;395(10229):1054-1062. doi:10.1016/s0140-6736(20)30566-3

8. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Medicine. March 2020. doi:10.1007/s00134-020-05991-x

9. Lippi G, Lavie CJ, Sanchis-Gomar F. Cardiac troponin I in patients with coronavirus disease 2019 (COVID-19): Evidence from a meta-analysis. Progress in Cardiovascular Diseases. 2020. doi:10.1016/j.pcad.2020.03.001

10. Liu Y, Yang Y, Zhang C et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Science China Life Sciences. 2020;63(3):364-374. doi:10.1007/s11427-020-1643-8

11. Patel AB, Verma A. COVID-19 and Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers. Jama. 2020. doi:10.1001/jama.2020.4812


12. South AM, Tomlinson L, Edmonston D, Hiremath S, Sparks MA. Controversies of renin–angiotensin system inhibition during the COVID-19 pandemic. Nature Reviews Nephrology. March 2020. doi:10.1038/s41581-020-0279-4

13. Zhou P, Yang X-L, Wang X-G, et al. Discovery of a novel coronavirus associated with the recent pneumonia outbreak in humans and its potential bat origin. 2020. doi:10.1101/2020.01.22.914952


14. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2). doi:10.1016/j.cell.2020.02.052

15. Ksiazek T, Erdman D, Goldsmith C et al. A Novel Coronavirus Associated with Severe Acute Respiratory Syndrome. New England Journal of Medicine. 2003;348(20):1953-1966. doi:10.1056/nejmoa030781

16. Chen C, Zhou Y, Wang DW. SARS-CoV-2: a potential novel etiology of fulminant myocarditis. Herz. May 2020. doi:10.1007/s00059-020-04909-z

17. Shi S, Qin M, Shen B, et al. Association of Cardiac Injury With Mortality in Hospitalized Patients With COVID-19 in Wuhan, China. JAMA Cardiology. 2020. doi:10.1001/jamacardio.2020.0950.

18. Lippi G, Plebani M. Laboratory abnormalities in patients with COVID-2019 infection. Clinical Chemistry and Laboratory Medicine (CCLM). 2020;0(0). doi:10.1515/cclm-2020-0198


19. Liu K, Fang Y-Y, Deng Y, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chinese Medical Journal. 2020:1. doi:10.1097/cm9.0000000000000744

20. Driggin E, Madhavan MV, Bikdeli B, et al. Cardiovascular Considerations for Patients, Health Care Workers, and Health Systems During the Coronavirus Disease 2019 (COVID-19) Pandemic. Journal of the American College of Cardiology. 2020. doi:10.1016/j.jacc.2020.03.031

21. Jellinger P, Davidson J, Blonde L, et al. Road Maps to Achieve Glycemic Control in Type 2 Diabetes Mellitus:ACE/AACE Diabetes Road Map Task Force. Endocrine Practice. 2007;13(3):260-268. doi:10.4158/ep.13.3.260

22. Morris JB, Tisi DA, Tan DCT, Worthington JH. Development and Palatability Assessment of Norvir® (Ritonavir) 100 mg Powder for Pediatric Population. International Journal of Molecular Sciences. 2019;20(7):1718. doi:10.3390/ijms20071718

23. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sciences. 2020;248:117477. doi:10.1016/j.lfs.2020.117477

24. Chu CM. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004;59(3):252-256. doi:10.1136/thorax.2003.012658

25. Frost CE, Byon W, Song Y, et al. Effect of ketoconazole and diltiazem on the pharmacokinetics of apixaban, an oral direct factor Xa inhibitor. British Journal of Clinical Pharmacology. 2015;79(5):838-846. doi:10.1111/bcp.12541

26. Mueck W, Kubitza D, Becka M. Co-administration of rivaroxaban with drugs that share its elimination pathways: pharmacokinetic effects in healthy subjects. British Journal of Clinical Pharmacology. 2013;76(3):455-466. doi:10.1111/bcp.12075

27. Itkonen MK, Tornio A, Lapatto‐Reiniluoto O, et al. Clopidogrel Increases Dasabuvir Exposure With or Without Ritonavir, and Ritonavir Inhibits the Bioactivation of Clopidogrel. Clinical Pharmacology & Therapeutics. 2018;105(1):219-228. doi:10.1002/cpt.1099

28. Marsousi N, Daali Y, Fontana P, et al. Impact of Boosted Antiretroviral Therapy on the Pharmacokinetics and Efficacy of Clopidogrel and Prasugrel Active Metabolites. Clinical Pharmacokinetics. 2018;57(10):1347-1354. doi:10.1007/s40262-018-0637-6

29. Teng R, Maya J. Absolute bioavailability and regional absorption of ticagrelor in healthy volunteers. J Drug Assess. 2014;3(1):43-50. doi:10.3109/21556660.2014.946604

30. Giguère P, Nhean S, Tseng AL, Hughes CA, Angel JB. Getting to the Heart of the Matter: A Review of Drug Interactions Between HIV Antiretrovirals and Cardiology Medications. Canadian Journal of Cardiology. 2019;35(3):326-340. doi:10.1016/j.cjca.2018.12.020


31. Carr R, Andre A, Bertz R. Concomitant administration of ABT-378/ritonavir (ABT-378/r) results in a clinically important pharmacokinetic (PK) interaction with atorvastatin (ATO) but not pravastatin (PRA). In: 40Th Interscience Conference On Antimicrobial Agents And Chemotherapy. ; 2000.

32. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research. 2020;30(3):269-271. doi:10.1038/s41422-020-0282-0

33. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends. 2020;14(1):72-73. doi:10.5582/bst.2020.01047

34. Tönnesmann E, Kandolf R, Lewalter T. Chloroquine cardiomyopathy – a review of the literature. Immunopharmacology and Immunotoxicology. 2013;35(3):434-442. doi:10.3109/08923973.2013.780078

35. Li F. Structure, Function, and Evolution of Coronavirus Spike Proteins. Annual Review of Virology. 2016;3(1):237-261. doi:10.1146/annurev-virology-110615-042301

36. Imai Y, Kuba K, Rao S, et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112-116. doi:10.1038/nature03712.

37. Guan W, Ni Z, Hu Y et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New England Journal of Medicine. 2020. doi:10.1056/nejmoa2002032

38. Who.int. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf[/BCOLOR]. Published 2020. Accessed April 29, 2020.

39. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet. 2020;395(10223):507-513. doi:10.1016/s0140-6736(20)30211-7

40. Guan W-J, Liang W-H, Zhao Y, et al. Comorbidity and its impact on 1590 patients with Covid-19 in China: A Nationwide Analysis. European Respiratory Journal. 2020:2000547. doi:10.1183/13993003.00547-2020

41. Mehra MR, Ruschitzka F. COVID-19 Illness and Heart Failure. JACC: Heart Failure. 2020. doi:10.1016/j.jchf.2020.03.004

42. Hu H, Ma F, Wei X, Fang Y. Coronavirus fulminant myocarditis treated with glucocorticoid and human immunoglobulin. European Heart Journal. 2020. doi:10.1093/eurheartj/ehaa190

43. Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiology. 2020. doi:10.1001/jamacardio.2020.1096

44. Li B, Yang J, Zhao F, et al. Prevalence and impact of cardiovascular metabolic diseases on COVID-19 in China. Clinical Research in Cardiology. 2020;109(5):531-538. doi:10.1007/s00392-020-01626-9

45. Wang H, Yang P, Liu K, et al. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Research. 2008;18(2):290-301. doi:10.1038/cr.2008.15

46. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Medicine. 2020;46(4):586-590. doi:10.1007/s00134-020-05985-9

47. Xiong T-Y, Redwood S, Prendergast B, Chen M. Coronaviruses and the cardiovascular system: acute and long-term implications. European Heart Journal. 2020. doi:10.1093/eurheartj/ehaa231.

48. Karmpaliotis D, Kirtane AJ, Ruisi CP, et al. Diagnostic and Prognostic Utility of Brain Natriuretic Peptide in Subjects Admitted to the ICU With Hypoxic Respiratory Failure Due to Noncardiogenic and Cardiogenic Pulmonary Edema. Chest. 2007;131(4):964-971. doi:10.1378/chest.06-1247.

49. Guo T, Fan Y, Chen M, et al. Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiology. 2020. doi:10.1001/jamacardio.2020.1017.

50. Chen C, Yan JT, Zhou N, Zhao JP, Wang DW. Analysis of myocardial injury in patients with COVID-19 and association between concomitant cardiovascular diseases and severity of COVID-19. Zhonghua xin xue guan bing za zhi. 2020 Mar 6;48:E008-.

51. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. Journal of Thrombosis and Haemostasis. 2020;18(4):844-847. doi:10.1111/jth.14768