Novel therapeutics in hepatoblastoma
Main Article Content
Abstract
Hepatoblastoma is the most common primary liver malignancy in children less than 5 years of age. The incidence of this cancer is increasing but therapy for hepatoblastoma has not significantly changed and it is primarily managed with combinations of surgery and chemotherapy. Conventional chemotherapy regimens include cisplatin, as it is currently the most effective agent for this tumor. Unfortunately, with the current modalities, the prognosis for advanced-stage disease remains poor due to the high rate of recurrence and/or the development of chemoresistance. As the understanding of the pathophysiology of hepatoblastoma deepens, there is a burgeoning interest in developing novel therapeutic agents for hepatoblastoma, including targeted therapies. In the current review, we discuss the use of major signaling pathways and their effector molecules such as β-catenin, c-MET, mTOR, PIM kinases, and PLK1 as therapeutic targets. In addition, we explore various alternative pre-clinical approaches that have been described in hepatoblastoma, including immunotherapy, differentiation agents, micro-RNAs, and targeted drug delivery. Finally, we outline the therapies currently under investigation in pre-clinical and clinical settings that show promising preliminary results for hepatoblastoma treatment.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Hadzic N, Finegold MJ. Liver Neoplasia in Children. Clinics in Liver Disease. 2011;15(2):443-462.
3. Spector LG, Birch J. The epidemiology of hepatoblastoma. Pediatr Blood Cancer. 2012;59(5):776-779.
4. Aronson DC, Schnater JM, Staalman CR, et al. Predictive value of the pretreatment extent of disease system in hepatoblastoma: results from the International Society of Pediatric Oncology Liver Tumor Study Group SIOPEL-1 study. J Clin Oncol. 2005;23(6):1245-1252.
5. Aronson DC, Czauderna P, Maibach R, Perilongo G, Morland B. The treatment of hepatoblastoma: Its evolution and the current status as per the SIOPEL trials. J Indian Assoc Pediatr Surg. 2014;19(4):201-207.
6. Roebuck DJ, Sebire NJ, Pariente D. Assessment of extrahepatic abdominal extension in primary malignant liver tumours of childhood. Pediatric Radiology. 2007;37(11):1096-1100.
7. Malogolowkin MH, Katzenstein HM, Meyers RL, et al. Complete surgical resection is curative for children with hepatoblastoma with pure fetal histology: a report from the Children's Oncology Group. J Clin Oncol. 2011;29(24):3301-3306.
8. Evans AE, Land VJ, Newton WA, Randolph JG, Sather HN, Tefft M. Combination chemotherapy (vincristine, adriamycin, cyclophosphamide, and 5-fluorouracil) in the treatment of children with malignant hepatoma. Cancer. 1982;50(5):821-826.
9. Filler RM, Ehrlich PF, Greenberg ML, Babyn PS. Preoperative chemotherapy in hepatoblastoma. Surgery. 1991;110(4):591-596; discussion 596-597.
10. Pierro A, Langevin AM, Filler RM, Liu P, Phillips MJ, Greenberg ML. Preoperative chemotherapy in ‘Unresectable’ hepatoblastoma. Journal of Pediatric Surgery. 1989;24(1):24-29.
11. Ortega JA, Krailo MD, Haas JE, et al. Effective treatment of unresectable or metastatic hepatoblastoma with cisplatin and continuous infusion doxorubicin chemotherapy: a report from the Childrens Cancer Study Group. J Clin Oncol. 1991;9(12):2167-2176.
12. Kremer N, Walther AE, Tiao GM. Management of hepatoblastoma: an update. Curr Opin Pediatr. 2014;26(3):362-369.
13. Hiyama E. Pediatric hepatoblastoma: diagnosis and treatment. Transl Pediatr. 2014;3(4):293-299.
14. Perilongo G, Maibach R, Shafford E, et al. Cisplatin versus cisplatin plus doxorubicin for standard-risk hepatoblastoma. N Engl J Med. 2009;361(17):1662-1670.
15. Zsiros J, Maibach R, Shafford E, et al. Successful treatment of childhood high-risk hepatoblastoma with dose-intensive multiagent chemotherapy and surgery: final results of the SIOPEL-3HR study. J Clin Oncol. 2010;28(15):2584-2590.
16. Katzenstein HM, Langham MR, Malogolowkin MH, et al. Minimal adjuvant chemotherapy for children with hepatoblastoma resected at diagnosis (AHEP0731): a Children's Oncology Group, multicentre, phase 3 trial. Lancet Oncol. 2019;20(5):719-727.
17. von Schweinitz D, Byrd DJ, Hecker H, et al. Efficiency and toxicity of ifosfamide, cisplatin and doxorubicin in the treatment of childhood hepatoblastoma. Study Committee of the Cooperative Paediatric Liver Tumour Study HB89 of the German Society for Paediatric Oncology and Haematology. Eur J Cancer. 1997;33(8):1243-1249.
18. Weinblatt ME, Siegel SE, Siegel MM, Stanley P, Weitzman JJ. Preoperative chemotherapy for unresectable primary hepatic malignancies in children. Cancer. 1982;50(6):1061-1064.
19. Alisi A, Cho CW, Locatelli F, Fruci D. Multidrug Resistance and Cancer Stem Cells in Neuroblastoma and Hepatoblastoma. International Journal of Molecular Sciences. 2013;14(12).
20. Lee H, El Jabbour T, Ainechi S, et al. General paucity of genomic alteration and low tumor mutation burden in refractory and metastatic hepatoblastoma: comprehensive genomic profiling study. Hum Pathol. 2017;70:84-91.
21. Aguiar TFM, Carneiro TN, da Costa CML, Rosenberg C, da Cunha IW, Krepischi ACV. The genetic and epigenetic landscapes of hepatoblastomas. Applied Cancer Research. 2017;37(1):20.
22. Russell JO, Monga SP. Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. Annual Review of Pathology: Mechanisms of Disease. 2018;13(1):351-378.
23. Koch A, Denkhaus D, Albrecht S, Leuschner I, von Schweinitz D, Pietsch T. Childhood Hepatoblastomas Frequently Carry a Mutated Degradation Targeting Box of the β-Catenin Gene. Cancer Research. 1999;59(2):269.
24. Cairo S, Armengol C, De Reynies A, et al. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell. 2008;14(6):471-484.
25. Sumazin P, Chen Y, Treviño LR, et al. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups. Hepatology. 2017;65(1):104-121.
26. Sang Park W, Ra Oh R, Young Park J, et al. Nuclear localization of β-catenin is an important prognostic factor in hepatoblastoma. The Journal of Pathology. 2001;193(4):483-490.
27. Tang Y, Berlind J, Mavila N. Inhibition of CREB binding protein-beta-catenin signaling down regulates CD133 expression and activates PP2A-PTEN signaling in tumor initiating liver cancer cells. Cell Communication and Signaling. 2018;16(1):9.
28. Ellerkamp V, Lieber J, Nagel C, et al. Pharmacological inhibition of beta-catenin in hepatoblastoma cells. Pediatric Surgery International. 2013;29(2):141-149.
29. Han ZG. Mutational landscape of hepatoblastoma goes beyond the Wnt-beta-catenin pathway. Hepatology. 2014;60(5):1476-1478.
30. Koch A, Weber N, Waha A, et al. Mutations and elevated transcriptional activity of conductin (AXIN2) in hepatoblastomas. The Journal of Pathology. 2004;204(5):546-554.
31. Huang S, Chen J, Tian R, et al. Down-regulation of dishevelled-2 inhibits cell proliferation and invasion in hepatoblastoma. Pediatric Blood & Cancer. 2018;65(7):e27032.
32. Purcell R, Childs M, Maibach R, et al. HGF/c-Met related activation of β-catenin in hepatoblastoma. Journal of Experimental & Clinical Cancer Research. 2011;30(1):96.
33. LoPiccolo J, Blumenthal GM, Bernstein WB, Dennis PA. Targeting the PI3K/Akt/mTOR pathway: effective combinations and clinical considerations. Drug Resist Updat. 2008;11(1-2):32-50.
34. West KA, Castillo SS, Dennis PA. Activation of the PI3K/Akt pathway and chemotherapeutic resistance. Drug Resist Updat. 2002;5(6):234-248.
35. Hartmann W, Kuchler J, Koch A, et al. Activation of phosphatidylinositol-3'-kinase/AKT signaling is essential in hepatoblastoma survival. Clin Cancer Res. 2009;15(14):4538-4545.
36. Adebayo Michael AO, Ko S, Tao J, et al. Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by β-Catenin Mutations. Cell Metabolism. 2019;29(5):1135-1150.e1136.
37. Liu P, Calvisi DF, Kiss A, et al. Central role of mTORC1 downstream of YAP/TAZ in hepatoblastoma development. Oncotarget; Vol 8, No 43. 2017.
38. Wagner F, Henningsen B, Lederer C, et al. Rapamycin blocks hepatoblastoma growth in vitro and in vivo implicating new treatment options in high-risk patients. European Journal of Cancer. 2012;48(15):2442-2450.
39. Molina L, Yang H, Adebayo Michael AO, et al. mTOR inhibition affects Yap1-β-catenin-induced hepatoblastoma growth and development. Oncotarget; Vol 10, No 15. 2019.
40. Grotegut S, Kappler R, Tarimoradi S, Lehembre F, Christofori G, Von Schweinitz D. Hepatocyte growth factor protects hepatoblastoma cells from chemotherapy-induced apoptosis by AKT activation. International journal of oncology. 2010;36(5):1261-1267.
41. Ventura J-J, Nebreda ÁR. Protein kinases and phosphatases as therapeutic targets in cancer. Clinical and Translational Oncology. 2006;8(3):153-160.
42. Stafman LL, Waldrop MG, Williams AP, et al. The presence of PIM3 increases hepatoblastoma tumorigenesis and tumor initiating cell phenotype and is associated with decreased patient survival. J Pediatr Surg. 2019;54(6):1206-1213.
43. Stafman LL, Williams AP, Garner EF, et al. Targeting PIM Kinases Affects Maintenance of CD133 Tumor Cell Population in Hepatoblastoma. Transl Oncol. 2019;12(2):200-208.
44. Zhang X, Song M, Kundu JK, Lee MH, Liu ZZ. PIM Kinase as an Executional Target in Cancer. J Cancer Prev. 2018;23(3):109-116.
45. Stafman LL, Mruthyunjayappa S, Waters AM, et al. Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma. Oncotarget. 2018;9(32):22665-22679.
46. Strebhardt K, Ullrich A. Targeting polo-like kinase 1 for cancer therapy. Nat Rev Cancer. 2006;6(4):321-330.
47. Ando K, Ozaki T, Yamamoto H, et al. Polo-like kinase 1 (Plk1) inhibits p53 function by physical interaction and phosphorylation. Journal of Biological Chemistry. 2004;279(24):25549-25561.
48. Komatsu S, Takenobu H, Ozaki T, et al. Plk1 regulates liver tumor cell death by phosphorylation of TAp63. Oncogene. 2009;28(41):3631-3641.
49. Yamada S-i, Ohira M, Horie H, et al. Expression profiling and differential screening between hepatoblastomas and the corresponding normal livers: identification of high expression of the PLK1 oncogene as a poor-prognostic indicator of hepatoblastomas. Oncogene. 2004;23(35):5901-5911.
50. Kats D, Ricker CA, Berlow NE, et al. Volasertib preclinical activity in high-risk hepatoblastoma. Oncotarget. 2019;10(60):6403.
51. Stafman LL, Williams AP, Marayati R, et al. PP2A activation alone and in combination with cisplatin decreases cell growth and tumor formation in human HuH6 hepatoblastoma cells. PLoS One. 2019;14(4):e0214469.
52. Mazhar S, Taylor SE, Sangodkar J, Narla G. Targeting PP2A in cancer: Combination therapies. Biochim Biophys Acta Mol Cell Res. 2019;1866(1):51-63.
53. Wedekind MF, Denton NL, Chen C-Y, Cripe TP. Pediatric cancer immunotherapy: opportunities and challenges. Pediatric Drugs. 2018;20(5):395-408.
54. Munz M, Baeuerle PA, Gires O. The emerging role of EpCAM in cancer and stem cell signaling. Cancer research. 2009;69(14):5627-5629.
55. Patriarca C, Macchi RM, Marschner AK, Mellstedt H. Epithelial cell adhesion molecule expression (CD326) in cancer: a short review. Cancer treatment reviews. 2012;38(1):68-75.
56. Armeanu-Ebinger S, Hoh A, Wenz J, Fuchs J. Targeting EpCAM (CD326) for immunotherapy in hepatoblastoma. Oncoimmunology. 2013;2(1):e22620.
57. Shimizu Y, Suzuki T, Yoshikawa T, Endo I, Nakatsura T. Next-generation cancer immunotherapy targeting glypican-3. Frontiers in oncology. 2019;9.
58. Zynger DL, Gupta A, Luan C, Chou PM, Yang G-Y, Yang XJ. Expression of glypican 3 in hepatoblastoma: an immunohistochemical study of 65 cases. Human pathology. 2008;39(2):224-230.
59. Toretsky JA, Zitomersky NL, Eskenazi AE, et al. Glypican-3 expression in Wilms tumor and hepatoblastoma. Journal of pediatric hematology/oncology. 2001;23(8):496-499.
60. Ortiz MV, Roberts SS, Glade Bender J, Shukla N, Wexler LH. Immunotherapeutic targeting of GPC3 in pediatric solid embryonal tumors. Frontiers in oncology. 2019;9:108.
61. Li W, Guo L, Rathi P, et al. Redirecting T cells to glypican-3 with 4-1BB zeta chimeric antigen receptors results in Th1 polarization and potent antitumor activity. Human gene therapy. 2017;28(5):437-448.
62. Kuroda T, Rabkin SD, Martuza RL. Effective Treatment of Tumors with Strong β-Catenin/T-Cell Factor Activity by Transcriptionally Targeted Oncolytic Herpes Simplex Virus Vector. Cancer Research. 2006;66(20):10127.
63. Megison ML, Gillory LA, Stewart JE, et al. Preclinical evaluation of engineered oncolytic herpes simplex virus for the treatment of pediatric solid tumors. PloS one. 2014;9(1):e86843.
64. Nakatake R, Kaibori M, Nakamura Y, et al. Third-generation oncolytic herpes simplex virus inhibits the growth of liver tumors in mice. Cancer Science. 2018;109(3):600-610.
65. Zhang S-C, Wang W-L, Cai W-S, Jiang K-L, Yuan Z-W. Engineered measles virus Edmonston strain used as a novel oncolytic viral system against human hepatoblastoma. BMC Cancer. 2012;12(1):427.
66. Reynolds CP, Lemons RS. Retinoid therapy of childhood cancer. Hematology/Oncology Clinics. 2001;15(5):867-910.
67. Masetti R, Biagi C, Zama D, et al. Retinoids in pediatric onco-hematology: the model of acute promyelocytic leukemia and neuroblastoma. Advances in therapy. 2012;29(9):747-762.
68. Waters AM, Stewart JE, Atigadda VR, et al. Preclinical evaluation of UAB30 in pediatric renal and hepatic malignancies. Molecular cancer therapeutics. 2016;15(5):911-921.
69. Garcia-Recio S, Gascón P. Biological and Pharmacological Aspects of the NK1-Receptor. BioMed Research International. 2015;2015:495704.
70. Garnier A, Ilmer M, Kappler R, Berger M. Therapeutic innovations for targeting hepatoblastoma. Anticancer research. 2016;36(11):5577-5592.
71. Rosso M, Munoz M, Berger M. The role of neurokinin-1 receptor in the microenvironment of inflammation and cancer. The Scientific World Journal. 2012;2012.
72. Garnier A, Ilmer M, Becker K, et al. Truncated neurokinin-1 receptor is an ubiquitous antitumor target in hepatoblastoma, and its expression is independent of tumor biology and stage. Oncol Lett. 2016;11(1):870-878.
73. Berger M, Neth O, Ilmer M, et al. Hepatoblastoma cells express truncated neurokinin-1 receptor and can be growth inhibited by aprepitant in vitro and in vivo. J Hepatol. 2014;60(5):985-994.
74. Ilmer M, Garnier A, Vykoukal J, et al. Targeting the neurokinin-1 receptor compromises canonical Wnt signaling in hepatoblastoma. Molecular cancer therapeutics. 2015;14(12):2712-2721.
75. Manasanch EE, Orlowski RZ. Proteasome inhibitors in cancer therapy. Nature reviews Clinical oncology. 2017;14(7):417.
76. Hooks KB, Audoux J, Fazli H, et al. New insights into diagnosis and therapeutic options for proliferative hepatoblastoma. Hepatology. 2018;68(1):89-102.
77. Emanuele S, Calvaruso G, Lauricella M, et al. Apoptosis induced in hepatoblastoma HepG2 cells by the proteasome inhibitor MG132 is associated with hydrogen peroxide production, expression of Bcl-XS and activation of caspase-3. International journal of oncology. 2002;21(4):857-865.
78. Lauricella M, Emanuele S, D’Anneo A, et al. JNK and AP-1 mediate apoptosis induced by bortezomib in HepG2 cells via FasL/caspase-8 and mitochondria-dependent pathways. Apoptosis. 2006;11(4):607-625.
79. Armeanu-Ebinger S, Fuchs J, Wenz J, Seitz G, Ruck P, Warmann SW. Proteasome inhibition overcomes trail resistance in human hepatoblastoma cells. Front Biosci. 2012;4:2194-2202.
80. D’Souza AM, Jiang Y, Cast A, et al. Gankyrin promotes tumor-suppressor protein degradation to drive hepatocyte proliferation. Cellular and molecular gastroenterology and hepatology. 2018;6(3):239-255.
81. Valanejad L, Lewis K, Wright M, et al. FXR-Gankyrin axis is involved in development of pediatric liver cancer. Carcinogenesis. 2017;38(7):738-747.
82. Wang G-L, Shi X, Haefliger S, et al. Elimination of C/EBPα through the ubiquitin-proteasome system promotes the development of liver cancer in mice. The Journal of clinical investigation. 2010;120(7):2549-2562.
83. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nature reviews Drug discovery. 2017;16(3):203.
84. Cristóbal I, Sanz-Álvarez M, Luque M, Caramés C, Rojo F, García-Foncillas J. The role of microRNAs in hepatoblastoma tumors. Cancers. 2019;11(3):409.
85. Indersie E, Lesjean S, Hooks KB, et al. MicroRNA therapy inhibits hepatoblastoma growth in vivo by targeting β‐catenin and Wnt signaling. Hepatology communications. 2017;1(2):168-183.
86. Cartier F, Indersie E, Lesjean S, et al. New tumor suppressor microRNAs target glypican-3 in human liver cancer. Oncotarget. 2017;8(25):41211.
87. Vasir JK, Labhasetwar V. Targeted drug delivery in cancer therapy. Technology in cancer research & treatment. 2005;4(4):363-374.
88. Liu G, Tsai H-i, Zeng X, et al. Phosphorylcholine-based stealthy nanocapsules enabling tumor microenvironment-responsive doxorubicin release for tumor suppression. Theranostics. 2017;7(5):1192.
89. Vishwakarma SK, Sharmila P, Bardia A, et al. Use of biocompatible sorafenib-gold nanoconjugates for reversal of drug resistance in human hepatoblatoma cells. Scientific reports. 2017;7(1):1-12.
90. Beaty O, 3rd, Berg S, Blaney S, et al. A phase II trial and pharmacokinetic study of oxaliplatin in children with refractory solid tumors: a Children's Oncology Group study. Pediatr Blood Cancer. 2010;55(3):440-445.
91. Zsiros J, Brugieres L, Brock P, et al. Dose-dense cisplatin-based chemotherapy and surgery for children with high-risk hepatoblastoma (SIOPEL-4): a prospective, single-arm, feasibility study. Lancet Oncol. 2013;14(9):834-842.
92. Zhang YT, Feng LH, Zhong XD, Wang LZ, Chang J. Vincristine and irinotecan in children with relapsed hepatoblastoma: a single-institution experience. Pediatr Hematol Oncol. 2015;32(1):18-25.
93. Qayed M, Powell C, Morgan ER, Haugen M, Katzenstein HM. Irinotecan as maintenance therapy in high-risk hepatoblastoma. Pediatric Blood & Cancer. 2010;54(5):761-763.
94. Katzenstein HM, Furman WL, Malogolowkin MH, et al. Upfront window vincristine/irinotecan treatment of high-risk hepatoblastoma: A report from the Children's Oncology Group AHEP0731 study committee. Cancer. 2017;123(12):2360-2367.
95. Marsh AM, Lo L, Cohen RA, Feusner JH. Sorafenib and bevacizumab for recurrent metastatic hepatoblastoma: stable radiographic disease with decreased AFP. Pediatr Blood Cancer. 2012;59(5):939-940.
96. Shanmugam N, Valamparampil JJ, Scott JX, et al. Complete remission of refractory hepatoblastoma after liver transplantation in a child with sorafenib monotherapy: A new hope? Pediatr Blood Cancer. 2017;64(12).