"Desert Chemotypes": The Potential of Desert Plants-Derived Metabolome to Become a Sustainable Resource for Drug Leads

Main Article Content

Rivka Ofir, PhD; BGU-iPSC Core Facility


Plants secondary metabolites that are essential for plant survival in its environment are a useful resource for drug discovery in the area of combination therapy. Desert plants, in particular, have a lot to offer; they experience stress conditions and activation/repression of pathways that lead to biosynthesis of unique compounds.

The current knowledge on the effectiveness of combination therapy as compared to single treatment support the use of active plant-derived extracts or fractions composed of several metabolites.   

A set of metabolites, termed "metabolite signature", within an active fraction, will serve as a guide in the process of desert plants domestication. The combination of modern methods of transcriptome, proteome and metabolome analyses with precision agriculture, will pave the way to produce sustainable plant biomass for pharmaceutical industries. 

Article Details

How to Cite
OFIR, Rivka. "Desert Chemotypes": The Potential of Desert Plants-Derived Metabolome to Become a Sustainable Resource for Drug Leads. Medical Research Archives, [S.l.], v. 8, n. 7, july 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2169>. Date accessed: 03 dec. 2022. doi: https://doi.org/10.18103/mra.v8i7.2169.
Research Articles


1. Srivastav VK, Egbuna C, Tiwari M. Chapter 1 - Plant secondary metabolites as lead compounds for the production of potent drugs. In: Egbuna C, Kumar S, Ifemeje JC, Ezzat SM, Kaliyaperumal S, editors. Phytochemicals as Lead Compounds for New Drug Discovery: Elsevier; 2020. p. 3-14.
2. Atanasov AG, Waltenberger B, Pferschy-Wenzig E-M, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnology advances 2015;33(8):1582-614.
3. Veeresham C. Natural products derived from plants as a source of drugs. Journal of Advanced Pharmaceutical Technology & Research 2012;3(4):200-01.
4. Lampariello LR, Cortelazzo A, Guerranti R, Sticozzi C, Valacchi G. The Magic Velvet Bean of Mucuna pruriens. Journal of traditional and complementary medicine 2012;2(4):331-39.
5. Ebert TJ. 14 - Autonomic Nervous System Pharmacology. In: Hemmings HC, Egan TD, editors. Pharmacology and Physiology for Anesthesia (Second Edition). Philadelphia: Elsevier; 2019. p. 282-99.
6. Hackney AC. Chapter 8 - Pharmacologic and Nutritional Substances to Enhance Performance or Produce Weight Loss. In: Hackney AC, editor. Exercise, Sport, and Bioanalytical Chemistry: Elsevier; 2016. p. 83-96.
7. Devaux CA, Rolain J-M, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? International journal of antimicrobial agents 2020:105938-38.
8. Thirumaran R, Prendergast GC, Gilman PB. Chapter 7 - Cytotoxic Chemotherapy in Clinical Treatment of Cancer. In: Prendergast GC, Jaffee EM, editors. Cancer Immunotherapy. Burlington: Academic Press; 2007. p. 101-16.
9. Coyle J, Kershaw P. Galantamine, a cholinesterase inhibitor that allosterically modulates nicotinic receptors: effects on the course of Alzheimer’s disease. Biological Psychiatry 2001;49(3):289-99.
10. Moses T, Goossens A. Plants for human health: greening biotechnology and synthetic biology. Journal of Experimental Botany 2017;68(15):4009-11.
11. Harlev E, Nevo E, Lansky EP, Lansky S, Bishayee A. Anticancer attributes of desert plants: a review. Anticancer Drugs 2012;23(3):255-71.
12. Walker KA. Inflammation and neurodegeneration: chronicity matters. Aging 2018;11(1):3-4.
13. Chitnis T, Weiner HL. CNS inflammation and neurodegeneration. The Journal of clinical investigation 2017;127(10):3577-87.
14. DeLegge MH, Smoke A. Neurodegeneration and Inflammation. Nutrition in Clinical Practice 2008;23(1):35-41.
15. Wang G, Tang W, Bidigare RR. Terpenoids As Therapeutic Drugs and Pharmaceutical Agents. In: Zhang L, Demain AL, editors. Natural Products: Drug Discovery and Therapeutic Medicine. Totowa, NJ: Humana Press; 2005. p. 197-227.
16. Cox-Georgian D, Ramadoss N, Dona C, Basu C. Therapeutic and Medicinal Uses of Terpenes. Medicinal Plants: From Farm to Pharmacy 2019:333-59.
17. Geron C, Guenther A, Greenberg J, Karl T, Rasmussen R. Biogenic volatile organic compound emissions from desert vegetation of the southwestern US. Atmospheric Environment 2006;40(9):1645-60.
18. Ibrahim MA, Mäenpää M, Hassinen V, et al. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. Journal of Experimental Botany 2010;61(6):1583-95.
19. Hai LL, Wen BJ, Meng XX. Flavonoids: Recent Advances as Anticancer Drugs. Recent Patents on Anti-Cancer Drug Discovery 2010;5(2):152-64.
20. Hassan AR, Amer KF, El-Toumy SA, Nielsen J, Christensen SB. A new flavonol glycoside and other flavonoids from the aerial parts of Taverniera aegyptiaca. Nat Prod Res 2019;33(8):1135-39.
21. Rauf A, Imran M, Khan IA, et al. Anticancer potential of quercetin: A comprehensive review. Phytotherapy Research 2018;32(11):2109-30.
22. Ajebli M, Eddouks M. Flavonoid-Enriched Extract from Desert Plant Warionia saharae Improves Glucose and Cholesterol Levels in Diabetic Rats. Cardiovascular & hematological agents in medicinal chemistry 2019;17(1):28-39.
23. Yoshikawa M, Xu F, Morikawa T, Ninomiya K, Matsuda H. Anastatins A and B, new skeletal flavonoids with hepatoprotective activities from the desert plant Anastatica hierochuntica. Bioorg Med Chem Lett 2003;13(6):1045-9.
24. Sak K. Anticancer effects of flavonoids on melanoma cells: are murine cells more sensitive compared to humans? 2014 2014;5(4):5.
25. Wishart DS FY, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. . DrugBank 5.0: a major update to the DrugBank database for 2018. . Nucleic Acids Res. 2017 Nov 8. doi: 10.1093/nar/gkx1037 2018.
26. Chahar MK, Sharma N, Dobhal MP, Joshi YC. Flavonoids: A versatile source of anticancer drugs. Pharmacognosy reviews 2011;5(9):1-12.
27. Wenzel U. Flavonoids as drugs at the small intestinal level. Current Opinion in Pharmacology 2013;13(6):864-68.
28. Hayat M AM, Munir F, et al. . Potential of plant flavonoids in pharmaceutics and nutraceutics. . J Biomol Biochem November-2017; 1(1): 12-17. 2017.
29. Podolak I, Galanty A, Sobolewska D. Saponins as cytotoxic agents: a review. Phytochemistry reviews : proceedings of the Phytochemical Society of Europe 2010;9(3):425-74.
30. Tian X, Tang H, Lin H, et al. Saponins: the potential chemotherapeutic agents in pursuing new anti-glioblastoma drugs. Mini Rev Med Chem 2013;13(12):1709-24.
31. Ferreira D, Gross GG, Hagerman AE, Kolodziej H, Yoshida T. Tannins and related polyphenols: perspectives on their chemistry, biology, ecological effects, and human health protection. Phytochemistry 2008;69(18):3006-8.
32. Krochmal A, Sherman P. Canaigre: A Desert Source of Tannin. Economic Botany 1951;5(4):367-77.
33. Ogawa S, Yazaki Y. Tannins from Acacia mearnsii De Wild. Bark: Tannin Determination and Biological Activities. Molecules 2018;23(4).
34. Haslam E. Natural Polyphenols (Vegetable Tannins) as Drugs:  Possible Modes of Action. Journal of Natural Products 1996;59(2):205-15.
35. Mukherjee PK. Chapter 4 - Qualitative Analysis for Evaluation of Herbal Drugs. In: Mukherjee PK, editor. Quality Control and Evaluation of Herbal Drugs: Elsevier; 2019. p. 79-149.
36. Wong Paz JE, Muñiz Márquez DB, Martínez Ávila GCG, Belmares Cerda RE, Aguilar CN. Ultrasound-assisted extraction of polyphenols from native plants in the Mexican desert. Ultrasonics Sonochemistry 2015;22:474-81.
37. Najjaa H, Arfa AB, Máthé Á, Neffati M. Aromatic and Medicinal Plants of Tunisian Arid and Desert Zone Used in Traditional Medicine, for Drug Discovery and Biotechnological Applications. In: Neffati M, Najjaa H, Máthé Á, editors. Medicinal and Aromatic Plants of the World - Africa Volume 3. Dordrecht: Springer Netherlands; 2017. p. 157-230.
38. Elmann A, Mordechay S, Erlank H, et al. Anti-neuroinflammatory effects of the extract of Achillea fragrantissima. BMC complementary and alternative medicine 2011;11:98-98.
39. Elmann A, Telerman A, Mordechay S, et al. Downregulation of microglial activation by achillolide A. Planta Med 2015;81(3):215-21.
40. Elmann A, Telerman A, Mordechay S, et al. 3,5,4'-Trihydroxy-6,7,3'-trimethoxyflavone protects astrocytes against oxidative stress via interference with cell signaling and by reducing the levels of intracellular reactive oxygen species. Neurochem Int 2014;78:67-75.
41. Elmann A, Telerman A, Ofir R, Kashman Y. Glutamate Toxicity to Differentiated Neuroblastoma N2a Cells Is Prevented by the Sesquiterpene Lactone Achillolide A and the Flavonoid 3,5,4'-Trihydroxy-6,7,3'-Trimethoxyflavone from Achillea fragrantissima. J Mol Neurosci 2017;62(1):99-105.
42. Elmann A, Telerman A, Ofir R, Kashman Y, Lazarov O. β-amyloid cytotoxicity is prevented by natural achillolide A. Journal of natural medicines 2018;72(3):626-31.
43. Tayeh Z, Dudai N, Schechter A, et al. Molecular Mode of Action of Asteriscus graveolens as an Anticancer Agent. International journal of molecular sciences 2018;19(8):2162.
44. Tayeh Z, Ofir R. Asteriscus graveolens Extract in Combination with Cisplatin/Etoposide/Doxorubicin Suppresses Lymphoma Cell Growth through Induction of Caspase-3 Dependent Apoptosis. International journal of molecular sciences 2018;19(8):2219.
45. Chaib F, Allali H, Bennaceur M, Flamini G. Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: Two Asteraceae Herbs Growing Wild in the Hoggar. Chemistry & Biodiversity 2017;14(8):e1700092.
46. Elmann A, Telerman A, Mordechay S, Erlank H, Ofir R. Antioxidant and astroprotective effects of a Pulicaria incisa infusion. Oxidative medicine and cellular longevity 2012;2012:157598-98.
47. Elmann A, Telerman A, Erlank H, et al. Protective and antioxidant effects of a chalconoid from Pulicaria incisa on brain astrocytes. Oxidative medicine and cellular longevity 2013;2013:694398-98.
48. Amiel E, Ofir R, Dudai N, et al. β-Caryophyllene, a Compound Isolated from the Biblical Balm of Gilead (Commiphora gileadensis), Is a Selective Apoptosis Inducer for Tumor Cell Lines. Evidence-based complementary and alternative medicine : eCAM 2012;2012:872394-94.
49. Dudai N, Shachter A, Satyal P, Setzer WN. Chemical Composition and Monoterpenoid Enantiomeric Distribution of the Essential Oils from Apharsemon (Commiphora gileadensis). Medicines (Basel, Switzerland) 2017;4(3):66.
50. Abu-Darwish MS, Cabral C, Gonçalves MJ, et al. Chemical composition and biological activities of Artemisia judaica essential oil from southern desert of Jordan. J Ethnopharmacol 2016;191:161-68.
51. Bouslama L, Kouidhi B, Alqurashi YM, Chaieb K, Papetti A. Virucidal Effect of Guggulsterone Isolated from Commiphora gileadensis. Planta Med 2019;85(16):1225-32.
52. Mahmoud Al Zoubi O. Evaluation of Anti-microbial Activity of Ex vitro and Callus Extracts from Commiphora gileadensis. Pak J Biol Sci 2019;22(2):73-82.
53. Al-sieni AI. The antibacterial activity of traditionally used Salvadora persica L. (miswak) and Commiphora gileadensis (palsam) in Saudi Arabia. Afr J Tradit Complement Altern Med 2014;11(1):23-7.
54. Yosef Friedjung A, Choudhary SP, Dudai N, Rachmilevitch S. Physiological conjunction of allelochemicals and desert plants. PloS one 2013;8(12):e81580-e80.
55. Jaradat N, Zaid AN, Hussein F, et al. Anti-Lipase Potential of the Organic and Aqueous Extracts of Ten Traditional Edible and Medicinal Plants in Palestine; a Comparison Study with Orlistat. Medicines (Basel, Switzerland) 2017;4(4):89.
56. Solowey E, Lichtenstein M, Sallon S, et al. Evaluating medicinal plants for anticancer activity. TheScientificWorldJournal 2014;2014:721402-02.
57. Abu-Darwish MS, Efferth T. Medicinal Plants from Near East for Cancer Therapy. Frontiers in pharmacology 2018;9:56-56.
58. Jaradat NA, Damiri B, Abualhasan MN. Antioxidant evaluation for Urtica urens, Rumex cyprius and Borago officinalis edible wild plants in Palestine. Pak J Pharm Sci 2016;29(1 Suppl):325-30.
59. el-Mekkawy S, Meselhy MR, Kusumoto IT, et al. Inhibitory effects of Egyptian folk medicines on human immunodeficiency virus (HIV) reverse transcriptase. Chem Pharm Bull (Tokyo) 1995;43(4):641-8.
60. Prakash Mishra A, Sharifi-Rad M, Shariati MA, et al. Bioactive compounds and health benefits of edible Rumex species-A review. Cell Mol Biol (Noisy-le-grand) 2018;64(8):27-34.
61. Fleisher Z, Fleisher A, Nachbar RB. Chemovariation of Artemisia herba alba Asso. Aromatic Plants of the Holy Land and the Sinai. Part XVI. Journal of Essential Oil Research 2002;14(3):156-60.
62. Reddy AR, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 2004;161(11):1189-202.
63. Ahanger MA, Gul F, Ahmad P, Akram NA. Chapter 3 - Environmental Stresses and Metabolomics—Deciphering the Role of Stress Responsive Metabolites. In: Ahmad P, Ahanger MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN, editors. Plant Metabolites and Regulation Under Environmental Stress: Academic Press; 2018. p. 53-67.
64. Zhang J, Feng J, Lu J, et al. Transcriptome differences between two sister desert poplar species under salt stress. BMC genomics 2014;15(1):337-37.
65. Catola S, Marino G, Emiliani G, et al. Physiological and metabolomic analysis of Punica granatum (L.) under drought stress. Planta 2016;243(2):441-49.
66. Hasanuzzaman M, Nahar K, Fujita M, et al. Enhancing Plant Productivity Under Salt Stress: Relevance of Poly-omics. In: Ahmad P, Azooz MM, Prasad MNV, editors. Salt Stress in Plants: Signalling, Omics and Adaptations. New York, NY: Springer New York; 2013. p. 113-56.
67. Ashraf MA, Iqbal M, Rasheed R, et al. Chapter 8 - Environmental Stress and Secondary Metabolites in Plants: An Overview. In: Ahmad P, Ahanger MA, Singh VP, Tripathi DK, Alam P, Alyemeni MN, editors. Plant Metabolites and Regulation Under Environmental Stress: Academic Press; 2018. p. 153-67.
68. Sun C, Gao X, Chen X, Fu J, Zhang Y. Metabolic and growth responses of maize to successive drought and re-watering cycles. Agricultural Water Management 2016;172:62-73.
69. Semel Y, Schauer N, Roessner U, Zamir D, Fernie AR. Metabolite analysis for the comparison of irrigated and non-irrigated field grown tomato of varying genotype. Metabolomics 2007;3(3):289-95.
70. Verpoorte R. Exploration of nature's chemodiversity: the role of secondary metabolites as leads in drug development. Drug Discovery Today 1998;3(5):232-38.
71. Arbona V, Manzi M, de Ollas Valverde C, Gómez-Cadenas A. Metabolomics as a Tool to Investigate Abiotic Stress Tolerance in Plants. International journal of molecular sciences 2013;14:4885-911.
72. Srivastav V, Tiwari M, Egbuna C. Plant Secondary Metabolites as Lead Compounds for the Production of Potent Drugs; 2019.
73. Fitzgerald JB, Schoeberl B, Nielsen UB, Sorger PK. Systems biology and combination therapy in the quest for clinical efficacy. Nat Chem Biol 2006;2(9):458-66.
74. Musumeci R, Speciale A, Costanzo R, et al. Berberis aetnensis C. Presl. extracts: antimicrobial properties and interaction with ciprofloxacin. Int J Antimicrob Agents 2003;22(1):48-53.
75. Mikulášová M, Chovanová R, Vaverková Š. Synergism between antibiotics and plant extracts or essential oils with efflux pump inhibitory activity in coping with multidrug-resistant staphylococci. Phytochemistry Reviews 2016;15(4):651-62.
76. Santiago C, Pang EL, Lim K-H, Loh H-S, Ting KN. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora. BMC complementary and alternative medicine 2015;15:178-78.
77. Cheesman MJ, Ilanko A, Blonk B, Cock IE. Developing New Antimicrobial Therapies: Are Synergistic Combinations of Plant Extracts/Compounds with Conventional Antibiotics the Solution? Pharmacognosy reviews 2017;11(22):57-72.
78. Goyal S, Gupta N, Chatterjee S, Nimesh S. Natural Plant Extracts as Potential Therapeutic Agents for the Treatment of Cancer. Curr Top Med Chem 2017;17(2):96-106.
79. Hemaiswarya S, Kruthiventi A, Doble M. Synergism between natural products and antibiotics against Infectious diseases. Phytomedicine : international journal of phytotherapy and phytopharmacology 2008;15:639-52.
80. Attar R, Tabassum S, Fayyaz S, et al. Natural products are the future of anticancer therapy: Preclinical and clinical advancements of Viscum album phytometabolites. Cell Mol Biol (Noisy-le-grand) 2015;61(6):62-8.
81. Chamberlin SR, Blucher A, Wu G, et al. Natural Product Target Network Reveals Potential for Cancer Combination Therapies. Frontiers in pharmacology 2019;10:557-57.
82. Shehab NG, Abu-Gharbieh E, Bayoumi FA. Impact of phenolic composition on hepatoprotective and antioxidant effects of four desert medicinal plants. BMC Complementary and Alternative Medicine 2015;15(1):401.
83. Gilbert NC, Gerstmeier J, Schexnaydre EE, et al. Structural and mechanistic insights into 5-lipoxygenase inhibition by natural products. Nature Chemical Biology 2020.
84. Moussaieff A, Rimmerman N, Bregman T, et al. Incensole acetate, an incense component, elicits psychoactivity by activating TRPV3 channels in the brain. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 2008;22(8):3024-34.
85. Benabderrahim MA, Yahia Y, Bettaieb I, Elfalleh W, Nagaz K. Antioxidant activity and phenolic profile of a collection of medicinal plants from Tunisian arid and Saharan regions. Industrial Crops and Products 2019;138:111427.
86. Warren CR, Aranda I, Cano FJ. Metabolomics demonstrates divergent responses of two Eucalyptus species to water stress. Metabolomics 2012;8(2):186-200.
87. Michaletti A, Naghavi MR, Toorchi M, Zolla L, Rinalducci S. Metabolomics and proteomics reveal drought-stress responses of leaf tissues from spring-wheat. Scientific reports 2018;8(1):5710-10.
88. Zhang L, Hu X, Miao X, et al. Genome-Scale Transcriptome Analysis of the Desert Shrub Artemisia sphaerocephala. PloS one 2016;11(4):e0154300-e00.
89. Khan A, Asaf S, Khan AL, et al. First complete chloroplast genomics and comparative phylogenetic analysis of Commiphora gileadensis and C. foliacea: Myrrh producing trees. PloS one 2019;14(1):e0208511-e11.
90. Davies KM, Jibran R, Zhou Y, et al. The Evolution of Flavonoid Biosynthesis: A Bryophyte Perspective. Frontiers in plant science 2020;11:7-7.