Corneal Hysteresis and its relevance to the Eye
Main Article Content
Abstract
Together with the tear film, the cornea is the first optical interface of the visual system and is responsible for about 80% of the refractive convergence power of the eye, determining whether a person is emmetropic, myopic or hyperopic. It also acts a barrier against trauma and microbes. The cornea is often described as the “window to the eye”.
Article Details
How to Cite
CARBONARO, Francis.
Corneal Hysteresis and its relevance to the Eye.
Medical Research Archives, [S.l.], v. 8, n. 8, aug. 2020.
ISSN 2375-1924.
Available at: <https://esmed.org/MRA/mra/article/view/2185>. Date accessed: 27 dec. 2024.
doi: https://doi.org/10.18103/mra.v8i8.2185.
Section
Review Articles
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
1. Kotecha A. What biomechanical properties of the cornea are relevant for the clinician? Surv Ophthalmol. 2007;52 Suppl 2(6 SUPPL.):S109-14. doi:10.1016/j.survophthal.2007.08.004
2. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156-162. doi:10.1016/j.jcrs.2004.10.044
3. Dupps WJ. Hysteresis: New mechanospeak for the ophthalmologist. J Cataract Refract Surg. 2007;33(9):1499-1501. doi:10.1016/j.jcrs.2007.07.008
4. Hoeltzel DA, Altman P, Buzard K, Choe K Il. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng. 1992;114(2):202-215. doi:10.1115/1.2891373
5. Carbonaro F, Andrew T, MacKey DA, Spector TD, Hammond CJ. Comparison of three methods of intraocular pressure measurement and their relation to central corneal thickness. Eye. 2010;24(7). doi:10.1038/eye.2010.11
6. Carbonaro F, Andrew T, Mackey DA, Spector TD, Hammond CJ. The Heritability of Corneal Hysteresis and Ocular Pulse Amplitude. A Twin Study. Ophthalmology. 2008;115(9). doi:10.1016/j.ophtha.2008.02.011
7. Hong J, Xu J, Wei A, et al. A new tonometer-the corvis ST tonometer: Clinical comparison with noncontact and goldmann applanation tonometers. Investig Ophthalmol Vis Sci. 2013;54(1):659-665. doi:10.1167/iovs.12-10984
8. Reznicek L, Muth D, Kampik A, Neubauer AS, Hirneiss C. Evaluation of a novel Scheimpflug-based non-contact tonometer in healthy subjects and patients with ocular hypertension and glaucoma. Br J Ophthalmol. 2013;97(11):1410-1414. doi:10.1136/bjophthalmol-2013-303400
9. Esporcatte LPG, Salomão MQ, Lopes BT, et al. Biomechanical diagnostics of the cornea. Eye Vis. 2020;7(1). doi:10.1186/s40662-020-0174-x
10. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Investig Ophthalmol Vis Sci. 2007;48(7):3026-3031. doi:10.1167/iovs.04-0694
11. Bao F, Geraghty B, Wang Q, Elsheikh A. Consideration of corneal biomechanics in the diagnosis and management of keratoconus: is it important? Eye Vis. 2016;3(1). doi:10.1186/s40662-016-0048-4
12. Ambrósio, Jr R, Correia FF, Lopes B, et al. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications. Open Ophthalmol J. 2017;11(1):176-193. doi:10.2174/1874364101711010176
13. Guo H, Hosseini-Moghaddam SM, Hodge W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis. BMC Ophthalmol. 2019;19(1):167. doi:10.1186/s12886-019-1165-3
14. Ortiz D, Piñero D, Shabayek MH, Arnalich-Montiel F, Alió JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33(8):1371-1375. doi:10.1016/j.jcrs.2007.04.021
15. Pepose JS, Feigenbaum SK, Qazi MA, Sanderson JP, Roberts CJ. Changes in Corneal Biomechanics and Intraocular Pressure Following LASIK Using Static, Dynamic, and Noncontact Tonometry. Am J Ophthalmol. 2007;143(1). doi:10.1016/j.ajo.2006.09.036
16. Hager A, Loge K, Füllhas MO, Schroeder B, Großherr M, Wiegand W. Changes in Corneal Hysteresis After Clear Corneal Cataract Surgery. Am J Ophthalmol. 2007;144(3):341-346. doi:10.1016/j.ajo.2007.05.023
17. Klein BEK, Klein R, Sponsel WE, et al. Prevalence of Glaucoma: The Beaver Dam Eye Study. Ophthalmology. 1992;99(10):1499-1504. doi:10.1016/S0161-6420(92)31774-9
18. Bengtsson B. The prevalence of glaucoma. Br J Ophthalmol. 1981;65(1):46-49. doi:10.1136/bjo.65.1.46
19. Garway-Heath DF, Crabb DP, Bunce C, et al. Latanoprost for open-angle glaucoma (UKGTS): A randomised, multicentre, placebo-controlled trial. Lancet. 2015;385(9975):1295-1304. doi:10.1016/S0140-6736(14)62111-5
20. Leske MC, Heijl A, Hyman L, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965-1972. doi:10.1016/j.ophtha.2007.03.016
21. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714-720. doi:10.1001/archopht.120.6.714
22. Anand A, de Moraes CG V., Teng CC, Tello C, Liebmann JM, Ritch R. Corneal hysteresis and visual field asymmetry in open angle glaucoma. Investig Ophthalmol Vis Sci. 2010;51(12):6514-6518. doi:10.1167/iovs.10-5580
23. Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: A prospective longitudinal study. Ophthalmology. 2013;120(8):1533-1540. doi:10.1016/j.ophtha.2013.01.032
24. Bochmann F, Ang GS, Azuara-Blanco A. Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON). Graefes Arch Clin Exp Ophthalmol. 2008;246(5):735-738. doi:10.1007/s00417-007-0756-5
25. Abitbol O, Bouden J, Doan S, Hoang-Xuan T, Gatinel D. Corneal hysteresis measured with the ocular response analyzer ® in normal and glaucomatous eyes. Acta Ophthalmol. 2010;88(1):116-119. doi:10.1111/j.1755-3768.2009.01554.x
26. Sullivan-Mee M, Katiyar S, Pensyl D, Halverson KD, Qualls C. Relative importance of factors affecting corneal hysteresis measurement. Optom Vis Sci. 2012. doi:10.1097/OPX.0b013e3182504214
27. Grise-Dulac A, Saad A, Abitbol O, et al. Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes. J Glaucoma. 2012;21(7):486-489. doi:10.1097/IJG.0b013e318220daf0
28. Morita T, Shoji N, Kamiya K, Fujimura F, Shimizu K. Corneal biomechanical properties in normal-tension glaucoma. Acta Ophthalmol. 2012;90(1). doi:10.1111/j.1755-3768.2011.02242.x
29. Ayala M. Corneal hysteresis in normal subjects and in patients with primary open-angle glaucoma and pseudoexfoliation glaucoma. Ophthalmic Res. 2011;46(4):187-191. doi:10.1159/000326896
30. Zhang C, Tatham AJ, Abe RY, et al. Corneal Hysteresis and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Am J Ophthalmol. 2016;166:29-36. doi:10.1016/j.ajo.2016.02.034
31. Zhang B, Shweikh Y, Khawaja AP, et al. Associations with Corneal Hysteresis in a Population Cohort: Results from 96 010 UK Biobank Participants. Ophthalmology. 2019;126(11):1500-1510. doi:10.1016/j.ophtha.2019.06.029
32. Park K, Shin J, Lee J. Relationship between corneal biomechanical properties and structural biomarkers in patients with normal-tension glaucoma: A retrospective study. BMC Ophthalmol. 2018;18(1). doi:10.1186/s12886-018-0673-x
33. Prata TS, Lima VC, De Moraes CGV, et al. Factors associated with topographic changes of the optic nerve head induced by acute intraocular pressure reduction in glaucoma patients. Eye. 2011;25(2):201-207. doi:10.1038/eye.2010.179
34. Gaspar R, Pinto LA, Sousa DC. Corneal properties and glaucoma: a review of the literature and meta-analysis. Arq Bras Oftalmol. 2017;80(3):202-206. doi:10.5935/0004-2749.20170050
35. Mansouri K, Leite MT, Weinreb RN, Tafreshi A, Zangwill LM, Medeiros FA. Association between corneal biomechanical properties and glaucoma severity. Am J Ophthalmol. 2012;153(3):419-427.e1. doi:10.1016/j.ajo.2011.08.022
36. Vu DM, Silva FQ, Haseltine SJ, Ehrlich JR, Radcliffe NM. Relationship between corneal hysteresis and optic nerve parameters measured with spectral domain optical coherence tomography. Graefe’s Arch Clin Exp Ophthalmol. 2013;251(7):1777-1783. doi:10.1007/s00417-013-2311-x
37. Carbonaro F, Hysi PG, Fahy SJ, Nag A, Hammond CJ. Optic disc planimetry, corneal hysteresis, central corneal thickness, and intraocular pressure as risk factors for glaucoma. Am J Ophthalmol. 2014;157(2). doi:10.1016/j.ajo.2013.10.017
38. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central Corneal Thickness and Corneal Hysteresis Associated With Glaucoma Damage. Am J Ophthalmol. 2006;141(5):868-875. doi:10.1016/j.ajo.2005.12.007
39. Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: A prospective longitudinal study. Ophthalmology. 2013;120(8):1533-1540. doi:10.1016/j.ophtha.2013.01.032
40. Chee RI, Silva FQ, Ehrlich JR, Radcliffe NM. Agreement of flicker chronoscopy for structural glaucomatous progression detection and factors associated with progression. Am J Ophthalmol. 2013;155(6). doi:10.1016/j.ajo.2013.01.005
41. De Moraes CVG, Hill V, Tello C, Liebmann JM, Ritch R. Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012;21(4):209-213. doi:10.1097/IJG.0b013e3182071b92
42. Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KCY, Sachdev N. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci. 2008;49(8):3262-3268. doi:10.1167/iovs.07-1556
43. Liang L, Zhang R, He L-Y. Corneal hysteresis and glaucoma. Int Ophthalmol. 2019;39(8):1909-1916. doi:10.1007/s10792-018-1011-2
44. Sigal IA, Yang H, Roberts MD, Burgoyne CF, Crawford Downs J. IOP-induced lamina cribrosa displacement and scleral canal expansion: An analysis of factor interactions using parameterized eye-specific models. Investig Ophthalmol Vis Sci. 2011;52(3):1896-1907. doi:10.1167/iovs.10-5500
45. Burgoyne CF, Downs JC. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2008;17(4):318-328. doi:10.1097/IJG.0b013e31815a343b
2. Luce DA. Determining in vivo biomechanical properties of the cornea with an ocular response analyzer. J Cataract Refract Surg. 2005;31(1):156-162. doi:10.1016/j.jcrs.2004.10.044
3. Dupps WJ. Hysteresis: New mechanospeak for the ophthalmologist. J Cataract Refract Surg. 2007;33(9):1499-1501. doi:10.1016/j.jcrs.2007.07.008
4. Hoeltzel DA, Altman P, Buzard K, Choe K Il. Strip extensiometry for comparison of the mechanical response of bovine, rabbit, and human corneas. J Biomech Eng. 1992;114(2):202-215. doi:10.1115/1.2891373
5. Carbonaro F, Andrew T, MacKey DA, Spector TD, Hammond CJ. Comparison of three methods of intraocular pressure measurement and their relation to central corneal thickness. Eye. 2010;24(7). doi:10.1038/eye.2010.11
6. Carbonaro F, Andrew T, Mackey DA, Spector TD, Hammond CJ. The Heritability of Corneal Hysteresis and Ocular Pulse Amplitude. A Twin Study. Ophthalmology. 2008;115(9). doi:10.1016/j.ophtha.2008.02.011
7. Hong J, Xu J, Wei A, et al. A new tonometer-the corvis ST tonometer: Clinical comparison with noncontact and goldmann applanation tonometers. Investig Ophthalmol Vis Sci. 2013;54(1):659-665. doi:10.1167/iovs.12-10984
8. Reznicek L, Muth D, Kampik A, Neubauer AS, Hirneiss C. Evaluation of a novel Scheimpflug-based non-contact tonometer in healthy subjects and patients with ocular hypertension and glaucoma. Br J Ophthalmol. 2013;97(11):1410-1414. doi:10.1136/bjophthalmol-2013-303400
9. Esporcatte LPG, Salomão MQ, Lopes BT, et al. Biomechanical diagnostics of the cornea. Eye Vis. 2020;7(1). doi:10.1186/s40662-020-0174-x
10. Shah S, Laiquzzaman M, Bhojwani R, Mantry S, Cunliffe I. Assessment of the biomechanical properties of the cornea with the ocular response analyzer in normal and keratoconic eyes. Investig Ophthalmol Vis Sci. 2007;48(7):3026-3031. doi:10.1167/iovs.04-0694
11. Bao F, Geraghty B, Wang Q, Elsheikh A. Consideration of corneal biomechanics in the diagnosis and management of keratoconus: is it important? Eye Vis. 2016;3(1). doi:10.1186/s40662-016-0048-4
12. Ambrósio, Jr R, Correia FF, Lopes B, et al. Corneal Biomechanics in Ectatic Diseases: Refractive Surgery Implications. Open Ophthalmol J. 2017;11(1):176-193. doi:10.2174/1874364101711010176
13. Guo H, Hosseini-Moghaddam SM, Hodge W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis. BMC Ophthalmol. 2019;19(1):167. doi:10.1186/s12886-019-1165-3
14. Ortiz D, Piñero D, Shabayek MH, Arnalich-Montiel F, Alió JL. Corneal biomechanical properties in normal, post-laser in situ keratomileusis, and keratoconic eyes. J Cataract Refract Surg. 2007;33(8):1371-1375. doi:10.1016/j.jcrs.2007.04.021
15. Pepose JS, Feigenbaum SK, Qazi MA, Sanderson JP, Roberts CJ. Changes in Corneal Biomechanics and Intraocular Pressure Following LASIK Using Static, Dynamic, and Noncontact Tonometry. Am J Ophthalmol. 2007;143(1). doi:10.1016/j.ajo.2006.09.036
16. Hager A, Loge K, Füllhas MO, Schroeder B, Großherr M, Wiegand W. Changes in Corneal Hysteresis After Clear Corneal Cataract Surgery. Am J Ophthalmol. 2007;144(3):341-346. doi:10.1016/j.ajo.2007.05.023
17. Klein BEK, Klein R, Sponsel WE, et al. Prevalence of Glaucoma: The Beaver Dam Eye Study. Ophthalmology. 1992;99(10):1499-1504. doi:10.1016/S0161-6420(92)31774-9
18. Bengtsson B. The prevalence of glaucoma. Br J Ophthalmol. 1981;65(1):46-49. doi:10.1136/bjo.65.1.46
19. Garway-Heath DF, Crabb DP, Bunce C, et al. Latanoprost for open-angle glaucoma (UKGTS): A randomised, multicentre, placebo-controlled trial. Lancet. 2015;385(9975):1295-1304. doi:10.1016/S0140-6736(14)62111-5
20. Leske MC, Heijl A, Hyman L, et al. Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology. 2007;114(11):1965-1972. doi:10.1016/j.ophtha.2007.03.016
21. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: Baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120(6):714-720. doi:10.1001/archopht.120.6.714
22. Anand A, de Moraes CG V., Teng CC, Tello C, Liebmann JM, Ritch R. Corneal hysteresis and visual field asymmetry in open angle glaucoma. Investig Ophthalmol Vis Sci. 2010;51(12):6514-6518. doi:10.1167/iovs.10-5580
23. Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: A prospective longitudinal study. Ophthalmology. 2013;120(8):1533-1540. doi:10.1016/j.ophtha.2013.01.032
24. Bochmann F, Ang GS, Azuara-Blanco A. Lower corneal hysteresis in glaucoma patients with acquired pit of the optic nerve (APON). Graefes Arch Clin Exp Ophthalmol. 2008;246(5):735-738. doi:10.1007/s00417-007-0756-5
25. Abitbol O, Bouden J, Doan S, Hoang-Xuan T, Gatinel D. Corneal hysteresis measured with the ocular response analyzer ® in normal and glaucomatous eyes. Acta Ophthalmol. 2010;88(1):116-119. doi:10.1111/j.1755-3768.2009.01554.x
26. Sullivan-Mee M, Katiyar S, Pensyl D, Halverson KD, Qualls C. Relative importance of factors affecting corneal hysteresis measurement. Optom Vis Sci. 2012. doi:10.1097/OPX.0b013e3182504214
27. Grise-Dulac A, Saad A, Abitbol O, et al. Assessment of corneal biomechanical properties in normal tension glaucoma and comparison with open-angle glaucoma, ocular hypertension, and normal eyes. J Glaucoma. 2012;21(7):486-489. doi:10.1097/IJG.0b013e318220daf0
28. Morita T, Shoji N, Kamiya K, Fujimura F, Shimizu K. Corneal biomechanical properties in normal-tension glaucoma. Acta Ophthalmol. 2012;90(1). doi:10.1111/j.1755-3768.2011.02242.x
29. Ayala M. Corneal hysteresis in normal subjects and in patients with primary open-angle glaucoma and pseudoexfoliation glaucoma. Ophthalmic Res. 2011;46(4):187-191. doi:10.1159/000326896
30. Zhang C, Tatham AJ, Abe RY, et al. Corneal Hysteresis and Progressive Retinal Nerve Fiber Layer Loss in Glaucoma. Am J Ophthalmol. 2016;166:29-36. doi:10.1016/j.ajo.2016.02.034
31. Zhang B, Shweikh Y, Khawaja AP, et al. Associations with Corneal Hysteresis in a Population Cohort: Results from 96 010 UK Biobank Participants. Ophthalmology. 2019;126(11):1500-1510. doi:10.1016/j.ophtha.2019.06.029
32. Park K, Shin J, Lee J. Relationship between corneal biomechanical properties and structural biomarkers in patients with normal-tension glaucoma: A retrospective study. BMC Ophthalmol. 2018;18(1). doi:10.1186/s12886-018-0673-x
33. Prata TS, Lima VC, De Moraes CGV, et al. Factors associated with topographic changes of the optic nerve head induced by acute intraocular pressure reduction in glaucoma patients. Eye. 2011;25(2):201-207. doi:10.1038/eye.2010.179
34. Gaspar R, Pinto LA, Sousa DC. Corneal properties and glaucoma: a review of the literature and meta-analysis. Arq Bras Oftalmol. 2017;80(3):202-206. doi:10.5935/0004-2749.20170050
35. Mansouri K, Leite MT, Weinreb RN, Tafreshi A, Zangwill LM, Medeiros FA. Association between corneal biomechanical properties and glaucoma severity. Am J Ophthalmol. 2012;153(3):419-427.e1. doi:10.1016/j.ajo.2011.08.022
36. Vu DM, Silva FQ, Haseltine SJ, Ehrlich JR, Radcliffe NM. Relationship between corneal hysteresis and optic nerve parameters measured with spectral domain optical coherence tomography. Graefe’s Arch Clin Exp Ophthalmol. 2013;251(7):1777-1783. doi:10.1007/s00417-013-2311-x
37. Carbonaro F, Hysi PG, Fahy SJ, Nag A, Hammond CJ. Optic disc planimetry, corneal hysteresis, central corneal thickness, and intraocular pressure as risk factors for glaucoma. Am J Ophthalmol. 2014;157(2). doi:10.1016/j.ajo.2013.10.017
38. Congdon NG, Broman AT, Bandeen-Roche K, Grover D, Quigley HA. Central Corneal Thickness and Corneal Hysteresis Associated With Glaucoma Damage. Am J Ophthalmol. 2006;141(5):868-875. doi:10.1016/j.ajo.2005.12.007
39. Medeiros FA, Meira-Freitas D, Lisboa R, Kuang TM, Zangwill LM, Weinreb RN. Corneal hysteresis as a risk factor for glaucoma progression: A prospective longitudinal study. Ophthalmology. 2013;120(8):1533-1540. doi:10.1016/j.ophtha.2013.01.032
40. Chee RI, Silva FQ, Ehrlich JR, Radcliffe NM. Agreement of flicker chronoscopy for structural glaucomatous progression detection and factors associated with progression. Am J Ophthalmol. 2013;155(6). doi:10.1016/j.ajo.2013.01.005
41. De Moraes CVG, Hill V, Tello C, Liebmann JM, Ritch R. Lower corneal hysteresis is associated with more rapid glaucomatous visual field progression. J Glaucoma. 2012;21(4):209-213. doi:10.1097/IJG.0b013e3182071b92
42. Wells AP, Garway-Heath DF, Poostchi A, Wong T, Chan KCY, Sachdev N. Corneal hysteresis but not corneal thickness correlates with optic nerve surface compliance in glaucoma patients. Invest Ophthalmol Vis Sci. 2008;49(8):3262-3268. doi:10.1167/iovs.07-1556
43. Liang L, Zhang R, He L-Y. Corneal hysteresis and glaucoma. Int Ophthalmol. 2019;39(8):1909-1916. doi:10.1007/s10792-018-1011-2
44. Sigal IA, Yang H, Roberts MD, Burgoyne CF, Crawford Downs J. IOP-induced lamina cribrosa displacement and scleral canal expansion: An analysis of factor interactions using parameterized eye-specific models. Investig Ophthalmol Vis Sci. 2011;52(3):1896-1907. doi:10.1167/iovs.10-5500
45. Burgoyne CF, Downs JC. Premise and prediction-how optic nerve head biomechanics underlies the susceptibility and clinical behavior of the aged optic nerve head. J Glaucoma. 2008;17(4):318-328. doi:10.1097/IJG.0b013e31815a343b