Recent Advances in quantitative dynamic PET imaging of neuroendocrine tumors

Main Article Content

Peng Fu Chaojie Zheng Yun Zhou

Abstract

Dynamic positron emission tomography (PET) imaging is a standard art of molecular imaging technology for visualization and quantitative assessment of biochemical and physiopathological activity at cellular and molecular levels in humans and laboratory animals. Tracer kinetic modeling approach developed and validated in last decades is now widely used to extract parameters from dynamic PET data. In the study of neuroendocrine tumors (NETs), the kinetic parameters such as tracer uptake rate constant Ki estimated from dynamic PET with FDA approved 18 F-FDG and 68 Ga-DOTATATE tracers are suggested to improve the accuracy of NET detection, characterization, grading, staging, and predicting/monitoring NET responses to treatment including peptide receptor radionuclide therapy. The whole-body parametric Ki images generated from shortened dynamic PET using robust parametric imaging algorithm such as machine learning-based approach is potential for clinical and research in NET. In addition, dynamic PET can provide valuable information, such as biological distribution and radiation dose in tissue, in the study of new radioactive tracer in NET. It is expected that quantitative dynamic PET imaging in NET will be widely used for the imaging of somatostatin receptors and evaluation of therapeutic drugs and probes.

Article Details

How to Cite
FU, Peng; ZHENG, Chaojie; ZHOU, Yun. Recent Advances in quantitative dynamic PET imaging of neuroendocrine tumors. Medical Research Archives, [S.l.], v. 8, n. 9, sep. 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2202>. Date accessed: 15 dec. 2024. doi: https://doi.org/10.18103/mra.v8i9.2202.
Section
Research Articles

References

1 Cives M, Strosberg JR. Gastroenteropancreatic neuroendocrine tumors. CA Cancer J Clin. 2018;68(6):471-487.
2 Maffione AM, Karunanithi S, Kumar R, Rubello D, Alavi A. Nuclear medicine procedures in the diagnosis of NET: a historical perspective. PET Clin. 2014;9(1):1-9.
3 Ambrosini V, Morigi JJ, Nanni C, Castellucci P, Fanti S. Current status of PET imaging of neuroendocrine tumours ([18F]FDOPA, [68Ga]tracers, [11C]/[18F]-HTP). Q J Nucl Med Mol Imaging. 2015;59(1): 58-69.
4 Ethun CG, Postlewait LM, Baptiste GG, McInnis MR, Cardona K, Russell MC, et al. Small bowel neuroendocrine tumors: a critical analysis of diagnostic work-up and operative approach. J Surg Oncol. 2016;114(6):671-676.
5 Oronsky B, Ma PC, Morgensztern D, Carter CA. Nothing but NET: a review of neuroendocrine tumors and carcinomas. Neoplasia. 2017;19(12):991-1002.
6 Barollo S, Bertazza L, Watutantrige-Fernando S, Censi S, Cavedon E, Galuppini F, et al. Overexpression of L-type amino acid transporter 1(LAT1) and 2(LAT2): novel markers of neuroendocrine tumors. PloS One. 2016;11(5):e0156044.
7 Mojtahedi A, Thamake S, Tworowskal, Ranganathan D, Delpassand ES. The value of (68)Ga-DOTATATE PET/CT in diagnosis and management of neuroendocrine tumors compared to current FDA approved imaging modalities: a review of literature. Am J Nucl Med Mol Imaging. 2014;4(5):426-434.
8 Hofman MS, Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35(2): 500-516.
9 Maffione AM, Karunanithi S, Kumar R, Rubello D, Alavi A. Nuclear medicine procedures in the diagnosis of NET: a historical perspective. PET Clin. 2014;9(1):1-9.
10 Carideo L, Prosperi D, Panzuto F, Magi L, Pratesi MS, Rinzivillo M, et al. Role of combined [68Ga]Ga-DOTA-SST analogues and [18F]FDG PET/CT in the management of GEP-NENs: a systematic review. J Clin Med. 2019;8(7). pii: E1032.
11 Muzi M, O’Sullivan F, Mankoff DA, Doot RK, Pierce LA, Kurland BF, et al. Quantitative assessment of dynamic PET imaging data in cancer imaging. Magn Reson Imaging. 2012;30(9):1203-1215.
12 Lammertsma AA. Forward to the past: the case for quantitative PET imaging. J Nucl Med. 2017;58(7):1019-1024.
13 Dimitrakopoulou-Strauss A, Pan L, Strauss LG. Quantitative approaches of dynamic FDG-PET and PET/CT studies (dPET/CT) for the evaluation of oncological patients. Cancer Imaging. 2012;12:283-289. doi: 10.1102/1470-7330.2012.0033
14 Alexander N, Vali R, Ahmadzadehfar H, Shammas A, Baruchel S. Review: The role of radiolabeled DOTA-conjugated peptides for imaging and treatment of childhood neuroblastoma. Curr Radiopharm. 2018;11(1):14-21. doi: 10.2174/1874471011666171215093112.
15 Koukouraki S, Strauss LG, Georgoulias V, Schuhmacher J, Haberkorn U, Karkavitsas N, et al. Evaluation of the pharmacokinetics of 68Ga-DOTATOC in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC threrapy. Eur J Nucl Med Mol Imaging. 2006;33(4):460-466.
16 Zhang P, Yu J, Li J, Shen L, Li N, Zhu H, et al. Clinical and prognostic value of PET/CT imaging with combination of 68Ga-DOTATATE and 18F-FDG in gastroenteropancreatic neuroendocrine neoplasms. Contrast Media Mol Imaging. 2018;2018:2340389. doi: 10.1155/2018/2340389. eCollection 2018.
17 Koukouraki S, Strauss LG, Georgoulias V, Eisenhut M, Haberkorn U, Dimitrakopoulou-Strauss A. Comparison of the pharmacokinetics of 68Ga-DOTATOC and [18F]FDG in patients with metastatic neuroendocrine tumours scheduled for 90Y-DOTATOC threrapy. Eur J Nucl Med Mol Imaging. 2006;33(10):1115-1122.
18 Soto-Montenegro ML, Peña-Zalbidea S, Mateos-Pérez JM, Oteo M, Romero E, Morcillo MÁ, et al. Meningiomas: a comparative study of 68Ga-DOTATOC, 68Ga-DOTANOC and 68Ga-DOTATATE for molecular imaging in mice. PloS One. 2014;9(11):e111624. doi: 10.1371/journal.pone.01116224. eCollection 2014.
19 Park SY, Kim HS, Song HJ, Dong KR, Chung WK, Yeo HY. A study on usefulness evaluation of SUV measured in mini-PACS for each one of PET/CT equipment. J Digit Imaging. 2015;28(1):62-67. doi: 10.1007/s10 278-014-9724-x.
20 Prando S, Carneiro CG, Robilotta CC, Sapienza MT. Comparison of different quantification methods for 18F-fluorodeoxyglucose-positron emission tomography studies in rat brains. Clinics (Sao Paulo). 2019;74:e1273. doi: 10.6061/clinics/2019/e1273. eCollection 2019.
21 Ottoy J, Verhaeghe J, Niemantsverdriet E, Wyffels L, Somers C, De Roeck E, et al. Validation of the semiquantitative static SUVR method for 18F-AV45 PET by pharmacokinetic modeling with an arterial input function. J Nucl Med. 2017;58(9):1483-1489. doi: 10.2967/jnumed.116.184481. Epub 2017 Mar 23.
22 Karakatsanis NA, Lodge MA, Tahari AK, Zhou Y, Wahl RL, Rahmim A. Dynamic whole-body PET parametric imaging: I. concept, acquisition protocal optimization and clinical application. Phys Med Biol. 2013;58 (20):7391-7418. doi: 10.1088/0031-9155/58/20/7391. Epub 2013 Sep 30.
23 Zhou Y, Ye W, Brasić JR, Wong DF. Multi-graphical analysis of dynamic PET. Neuroimage. 2010 Feb 15;49(4):2947-2957. doi: 10.1016/j.neuroimage.2009.11.028. Epub 2009 Nov 17. PMID: 19931403; PMCID: PMC2824569.
24 Van Binnebeek S, Koole M, Terwinghe C, Baete K, Vanbilloen B, Haustermans K, et al. Dynamic 68Ga-DOTATOC PET/CT and static image in NET patients. Correlation of parameters during PRRT. Nuklearmedizin. 2016;55(3):104-114. doi: 10.3413/Nukmed-0742-15-05. Epub 2016 Apr 8.
25 Gabriel M, Oberaurer A, Dobrozemsky G, Decristoforo C, Putzer D, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET for assessing response to somatostatin-receptor-mediated radionuclide therapy. J Nucl Med. 2009;50(9):1427-1434. doi: 10.2967/jnumed.108.053421. Epub 2009 Aug 18.
26 Velikyan I, Sundin A, Sörensen J, Lubberink M, Sandström M, Garske-Román U, et al. Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: net uptake rate of accurate quantfication. J Nucl Med. 2014;55(2):204-210. doi: 10.2967/jnumed.113.126177. Epub 2013 Dec 30.
27 Ilan E, Velikyan I, Sandström M, Sundin A, Lubberink M. Tumor-to-Blood Ratio for Assessment of Somatostatin Receptor Density in Neuroendocrine Tumors Using 68Ga-DOTATOC and 68Ga-DOTATATE. J Nucl Med. 2020;61(2):217-221. doi:10.2967/jnumed.119.228072
28 Huang SC. Anatomy of SUV. Standardized uptake value, Nucl Med and Biol 2000; 27(7), 643-646.
29 Seo S, Kim SJ, Lee DS, Lee JS. Recent advances in parametric neuroreceptor mapping with dynamic PET: basic concepts and graphical analyses. Neurosci Bull. 2014;30(5):733-754. doi: 10.1007/s12264-014-1465-9. Epub 2014 Sep 28.
30 Zuo Y, Qi J, Wang G. Relative Patlak plot for dynamic PET parameter imaging without the need for early-time input function. Phys Med Biol. 2018;63(16):165004. doi: 10.1088/1361-6560/ aad444.
31 Ilan E, Sandström M, Velikyan I, Sundin A, Eriksson B, Lubberink M. Parametric net influx rate images of 68Ga-DOTATOC and 68Ga-DOTATATE: quantitative accuracy and improved image contrast. J Nucl Med. 2017;58(5):744-749. doi: 10.2967/jnumed.116.180380. Epub 2016 Oct 27.
32. Zhang X, Xie Z, Berg E, Judenhofer MS, Liu W, Xu T, et al. Total-Body Dynamic Reconstruction and Parametric Imaging on the uEXPLORER. J Nucl Med. 2020 Feb;61(2):285-291. doi: 10.2967/jnumed.119.230565. Epub 2019 Jul 13. PMID: 31302637.
33. Karakatsanis NA, Casey ME, Lodge MA, Rahmim A, Zaidi H. Whole-body direct 4D parametric PET imaging employing nested generalized Patlak expectation-maximization reconstruction. Phys Med Biol. 2016 Aug 7;61(15):5456-5485. doi: 10.1088/0031-9155/61/15/5456. Epub 2016 Jul 6. PMID: 27383991; PMCID: PMC5884686.
34. Karakatsanis NA, Zhou Y, Lodge MA, Casey ME, Wahl RL, Zaidi H, et al. Generalized whole-body Patlak parametric imaging for enhanced quantification in clinical PET. Phys Med Biol. 2015 Nov 21;60(22):8643-8673. doi: 10.1088/0031-9155/60/22/8643. Epub 2015 Oct 28. PMID: 26509251; PMCID: PMC4710061.
35. Zhou Y, Yu J, Liu M, Li H, Yang Z, Wahl R. A machine learning-based parametric imaging algorithm for noninvasive quantification of dynamic [68Ga] DOTATATE PET-CT. Journal of Nuclear Medicine. 2019;60:1186-.
36 Y. Zhou, S. C. Huang, and M. Bergsneider, Linear ridge regression with spatial constraint for generation of parametric images in dynamic positron emission tomography studies. IEEE Transactions on Nuclear Science, vol. 48, pp. 125-130, 2001.
37 Sänger P, Schierz JH, Marlowe RJ, Freesmeyer M. Detectability of hypervascularity in early dynamic PET depends on tracer kinetics: 18F-FDG versus 68Ga-DOTATOC in hepatic NET matastasis. Liver Int. 2014;34(1):161. doi: 10.1111/liv.12192. Epub 2013 May 12.
38 Sänger PW, Freesmeyer M. Early dynamic 68Ga-DOTA-D-Phe1-Tyr3-Octreotide PET/CT in patients with hepatic metastases of neuroendocrine tumors. Clin Nucl Med. 2016;41(6):447-453. doi: 10.1097/RLU.0000000000001154.
39 Fani M, Nicolas GP, Wild D. Somatostatin receptor antagonists for imaging and therapy. J Nucl Med. 2017;58(Suppl 2):61S-66S. doi: 10.2967/jnumed.116.186783.
40 Krebs S, Pandit-Taskar N, Reidy D, Beattie BJ, Lyashchenko SK, Lewis JS, et al. Biodistribution and radiation dose estimates for 68Ga-DOTA-JR11 in patients with metastatic neuroendocrine tumors. Eur J Nucl Med Mol Imaging. 2019;46(3):677-685.
41 Zhu W, Cheng Y, Wang X, Yao S, Bai C, Zhao H, et al. Head-to-head comparison of 68Ga-DOTA-JR11 and 68Ga-DOTATATE PET/CT in patients with metastatic, well-differentiated neuroendocrine tumors: a prospective study. J Nucl Med. 2019 Nov 1. pii: jnumed.119.235093. doi: 10.2967/jnumed.119. 235093. [Epub ahead of print]
42 Nicolas GP, Schreiter N, Kaul F, Uiters J, Bouterfa H, Kaufmann J, et al. Sensitivity comparison of 68Ga-OPS202 and 68Ga-DOTATOC PET/CT in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase II imaging study. J Nucl Med. 2018;59(6):915-921.
43 Maneuski D, Giacomelli F, Lemaire C, Pimlott S, Plenevaux A, Owens J, et al. On the use of positron counting for radio-Assay in nuclear pharmaceutical production. Appl Radiat Isot. 2017;125:9-14. doi: 10.1016/j.apradiso. 2017.03.021. Epub 2017 Mar 24.
44 Hardiansyah D, Attarwala AA, Kletting P, Mottaghy FM, Glatting G. Prediction of time-integrated activity coefficients in PRRT using simulated dynamic PET and a pharmacokinetic model. Phys Med. 2017; 42:298-304. doi: 10.1016/j.ejmp.2017.06.024. Epub 2017 Jul 22.
45 Rahmim A, Lodge MA, Karakatsanis NA, Panin VY, Zhou Y, McMillan A, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46(2):501-518. doi: 10.1007/s002 59-018-4153-6. Epub 2018 Sep 29.
46 Zhuang M, Karakatsanis NA, Dierckx RAJO, Zaidi H. Quantitative analysis of heterogeneous [18F]FDG static (SUV) vs. Patlak (Ki) whole-body PET imaging using different segmentation methods: a simulation study. Mol Imaging Biol. 2019;21(2):317-327. Doi: 10.1007/s11307-018- 1241-8.
47 Leahy R, Boellaard R, Zaidi H. Whole-body parametric PET imaging will replece conventional image-derived PET metrics in clinical oncology. Med Phys. 2018;45(12):5355-5358. doi: 10.1002/mp.13266. Epub 2018 Nov 26.