Detrimental effects of malaria, toxoplasmosis, leishmaniosis and Chagas disease on cardiac and skeletal muscles Effects of protozoan infections on muscles

Main Article Content

Mauro Toledo Marrelli Matthew Fiedler Claudia Biguetti Marco Brotto

Abstract

The pathogenic mechanisms of several diseases triggered by protozoan parasites, such as the causative agents of Chagas disease, toxoplasmosis, leishmaniosis, and malaria, have demonstrated to cause direct detrimental effect on cardiac and skeletal muscle. These are amongst the most prevalent and epidemiologically relevant protozoan infections worldwide and infecting millions of people per year. As such, this review focuses on the current knowledge on the pathogenic mechanisms of these diseases on muscles. Case studies and original research addressing the mechanisms of action for direct and indirect damage to cardiac and skeletal muscle were analyzed and the main findings summarized. Importantly, all diseases reviewed here produce an intense inflammatory response, with the associated oxidative stress and pro-inflammatory cytokine production leading to or furthering these detrimental effects. Critically, the disruption of cardiac muscle function can lead to minor arrhythmias and even death, and skeletal muscle damage can result in homeostatic imbalances serving to further morbidity and mortality. Strategies for preventing complications and determining the effectiveness of interventions designed with antioxidant and anti-inflammatory molecules to minimize muscle injury and help the millions of people with these diseases are an urgent need.

Article Details

How to Cite
MARRELLI, Mauro Toledo et al. Detrimental effects of malaria, toxoplasmosis, leishmaniosis and Chagas disease on cardiac and skeletal muscles. Medical Research Archives, [S.l.], v. 8, n. 9, sep. 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2218>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v8i9.2218.
Section
Review Articles

References

1. Pette D, Staron RS. Cellular and molecular diversities of mammalian skeletal muscle fibers. Rev Physiol Biochem Pharmacol. 1990;116:1-76.
2. Sweeney HL, Hammers DW. Muscle contraction. Cold Springs Harbor Perspectives in Biology; 2018.
3. Gowers WR. Myopathy and a distal form. Br Med J. 1902;2(2167): 89–92.
4. Tooth HH. Recent observations on progressive muscular atrophy. Brain.1887;10(2-3): 243–53.
5. Manring H, Abreu E, Brotto L, Weisleder N, Brotto M. Novel excitation-contraction coupling related genes reveal aspects of muscle weakness beyond atrophy-new hopes for treatment of musculoskeletal diseases. Front Physiol. 2014;5:37.
6. Voermans NC, van Alfen N, Pillen S, Lammens M, Schalkwijk J, Zwarts MJ, et al. Neuromuscular involvement in various types of Ehlers-Danlos syndrome. Ann Neurol. 2009;65(6):687-97.
7. Collins R. Protozoan parasites of the intestinal tract: a review of Coccidia and Microsporida. J Am Osteopath Assoc. 1997;97(10):593-8.
8. Hodges K, Gill R. Infectious diarrhea: Cellular and molecular mechanisms. Gut Microbes. 2010;1(1):4-21.
9. Bhat S, Kumar M, Alva J. Malaria and the conducting system of the heart. BMJ Case Rep. 2013; 2013: bcr2012007462.
10. De Silva H, Goonetilleke A, Senaratna N, Ramesh N, Jayawickrama U, Jayasinghe K, et al. Skeletal-muscle necrosis in severe Falciparum-Malaria. British Med J. 1988;296(6628):1039-.
11. Taylor W, Prosser D. Acute renal failure, acute rhabdomyolysis and falciparum malaria. ScienceDirect: Trans R Soc Trop Med Hyg. 1992;86: 361.
12. Krauth-Siegel RL, Schmidt H. Trypanothione and tryparedoxin in ribonucleotide reduction. Methods Enzymol. 2002;347:259-66.
13. Lom J 1976. Biology of the trypanosomes and trypanoplasms of fish. In WHR Lumsden, DA Evans (eds), Biology of the Kinetoplastida, Academic Press, London/New York/San Francisco, 1976:269-337
14. Agut A, Corzo N, Murciano J, Laredo FG, Soler M. Clinical and radiographic study of bone and joint lesions in 26 dogs with leishmaniasis. Vet Rec. 2003;153(21):648-52.
15. Alves G, Pinho F, Silva S, Cruz M, Costa F. Cardiac and pulmonary alterations in symptomatic and asymptomatic dogs infected naturally with Leishmania (Leishmania) chagasi. Braz J Med Biol Res. 2010;43(3):310-5.
16. Araújo Jorge TC, Barbosa HS, Moreira AL, De Souza W, Meirelles MN. The interaction of myotropic and macrophagotropic strains of Trypanosoma cruzi with myoblasts and fibers of skeletal muscle. Z Parasitenkd. 1986;72(5):577-84.
17. López-Peña M, Alemañ N, Muñoz F, Fondevila D, Suárez ML, Goicoa A, et al. Visceral leishmaniasis with cardiac involvement in a dog: a case report. Acta Vet Scand. 2009;51:20.
18. Meirelles MN, de Araujo-Jorge TC, Miranda CF, de Souza W, Barbosa HS. Interaction of Trypanosoma cruzi with heart muscle cells: ultrastructural and cytochemical analysis of endocytic vacuole formation and effect upon myogenesis in vitro. Eur J Cell Biol. 1986;41(2):198-206.
19. Menezes-Souza D, Mendes TA, Nagem RA, Santos TT, Silva AL, Santoro MM, et al. Mapping B-cell epitopes for the peroxidoxin of Leishmania (Viannia) braziliensis and its potential for the clinical diagnosis of tegumentary and visceral leishmaniasis. PLoS One. 2014;9(6):e99216.
20. Lidani K, Andrade F, Bavia L, Damasceno F, Beltrame M, Messias-Reason I. Chagas disease: From discovery to a worldwide health problem. Front Public Health. 2019; 7: 166.
21. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simões MV. Pathogenesis of chronic Chagas heart disease. Circulation. 2007;115(9):1109-23.
22. Santi-Rocca J, Fernandez-Cortes F, Chillon-Marinas C, Gonzalez-Rubio M, Martin D, Girones N, et al. A multi-parametric analysis of Trypanosoma cruzi infection: Common pathophysiologic patterns beyond extreme heterogeneity of host responses. Sci Rep. 2017;7: 8893.
23. Andrade L, Machado C, Chiari E, Pena S, Macedo A. Differential tissue distribution of diverse clones of Trypanosoma cruzi in infected mice. Mol Biochem Parasitol. 1999,163-72.
24. Wesley M, Moraes A, Rosa A, Lot Carvalho J, Shiroma T, Vital T. Correlation of parasite burden, kDNA integration, autoreactive antibodies, and cytokine pattern in the pathophysiology of Chagas disease. Front Microbiol. 2019;10:1856.
25. Ferreira R, Ianni B, Abel L, Buck P, Mady C, Kalil J, et al. Increased plasma levels of tumor necrosis factor-a in asymptomatic/indeterminate and Chagas disease cardiomyopathy persons. Mem Inst Oswaldo Cruz. 2003.;98:407-11.
26. Silva-Almeida M, Carvalho LO, Abreu-Silva AL, d'Escoffier LN, Calabrese KS. Leishsmania (Leishmania) amazonensis infection: Muscular involvement in BALB/c and C3H.HeN mice. Exp Parasitol. 2010;124(3):315-8.
27. Girones N, Rodriquez C, Carrasco-Marin E, Hernaez R, de Rego J, Fresno M. Dominant T- and B-cell epitopes in an autoantigen linked to Chagas disease. J Clin Investig. 2001;107: 985–93.
28. Baez A, Presti L, Rivarola H, Pons P, Fretes R, Paglini-Olivia P. Chronic indeterminate phase of Chagas' disease: mitochondrial involvement in infection with two strains. Parasitol. 2013;140: 414-21.
29. Baez A, Presti L, Rivarola H, Pons P, Fretes R, Paglini-Olivia P. Mitochondrial involvement in chronic chagasic cardiomyopathy. Trans R Soc Trop Med Hyg. 2011;105(5): 239-46
30. Baez A, Presti L, Rivarola W, Pons P, Fretes R, Paglini-Olivia P. Trypanosoma cruzi: Cardiac mitochondrial alterations produced by two different strain in the acute phase of the infection. Exp Parisitol. 2008;120(4): 397-402.
31. Molina HA, Kierszenbaum F. A study of human myocardial tissue in Chagas' disease: distribution and frequency of inflammatory cell types. Int J Parasitol. 1987;17(7):1297-305.
32. Monteón VM, Furuzawa-Carballeda J, Alejandre-Aguilar R, Aranda-Fraustro A, Rosales-Encina JL, Reyes PA. American trypanosomosis: in situ and generalized features of parasitism and inflammation kinetics in a murine model. Exp Parasitol. 1996;83(3):267-74.
33. Montes de Oca M, Torres SH, Loyo JG, Vazquez F, Hernández N, Anchustegui B, et al. Exercise performance and skeletal muscles in patients with advanced Chagas disease. Chest. 2004;125(4):1306-14.
34. Ramirez-Archila MV, Muñiz J, Virgen-Ortiz A, Newton-Sánchez O, Melnikov VG, Dobrovinskaya OR. Trypanosoma cruzi: correlation of muscle lesions with contractile properties in the acute phase of experimental infection in mice (Mus musculus). Exp Parasitol. 2011;128(4):301-8.
35. Storino R, Milei J. Enfermedad de Chagas. Doyma Argentina Editorial, Buenos Aires, 1994; 593-604.
36. Novaes R, Penitente A, Goncalves R, Talvani A, Neves C, Maldonado I, et al. Effects of Trypanosoma cruzi infection on myocardial morphology, single cardiomyocyte contractile function and exercise tolerance in rats. Int J Exp Pathol. 2011;92(5): 299–307.
37. Novaes R, Goncalves R, Penitente A, Bozi L, Neves C, Maldonado I, et al. Modulation of inflammatory and oxidative status by exercise attenuates cardiac morphofunctional remodeling in experimental Chagas cardiomyopathy. Science Direct: Life Science. 2016;156: 210-9.
38. Novaes R, Goncalves R, Penitente A, Cupertino M, Maldonado I, Talvani A, et al. Parasite control and skeletal myositis in Trypanosoma cruzi-infected and exercised rats. Acta Trop. 2017;170: 8-15.
39. Fialho P, Tura B, Sousa A, Oliveria C, Soares C, Olivera J, et al. Effects of an exercise program on the functional capacity of patients with chronic Chagas' heart disease, evaluated by cardiopulmonary testing. Rev Soc Bras Med Trop. 2012;45(2):220-4.
40. Esper L, Roman-Campos D, Lara A, Brant F, Castro LL, Barroso A, et al. Role of SOCS2 in modulating heart damage and function in a murine model of acute Chagas disease. Am J Pathol. 2012;181(1):130-40.
41. Barbosa HS, Nazareth M, Meirelles SL. Ultrastructural detection in vitro of WGA-, RCAI-, and Con A-binding sites involved in the invasion of heart muscle cells byTrypanosoma cruzi. Parasitol Res.1992;78: 404-9.
42. Benatar AF, García GA, Bua J, Cerliani JP, Postan M, Tasso LM, et al. Galectin-1 Prevents Infection and Damage Induced by Trypanosoma cruzi on Cardiac Cells. PLoS Negl Trop Dis. 2015;9(10):e0004148.
43. Souza B, Azevedo C, Lima R, Kaneto C, Vasconcelos J, Guimaraes E, et al. Bone marrow cells migrate to the heart and skeletal muscle and participate in tissue repair after Trypanosoma cruzi infection in mice. Int J Exp Path. 2014;95: 321-29.
44. Pigott DM, Golding N, Messina JP, Battle KE, Duda KA, Balard Y, et al. Global database of leishmaniasis occurrence locations, 1960-2012. Sci Data. 2014;1:140036.
45. Laison R, Shaw JJ. Ecology and epidemiology: New World. Academic Press: Biology and Epidemiology. 1987; 291-363.
46. Barbi J, Brombacher F, Satoskar AR. T cells from Leishmania major-susceptible BALB/c mice have a defect in efficiently up-regulating CXCR3 upon activation. J Immunol. 2008; 181(7): 4613-20.
47. Drew JS, Farkas GA, Pearson RD, Rochester DF. Effects of a chronic wasting infection on skeletal muscle size and contractile properties. J Appl Physiol. 1988;64(1):460-5.
48. Alahveridiyev A, Bagirova M, Elcicek S, Koc R, Baydar S, Findikli N. Adipose tissue-derived stem cells as a new host cell in latent leishmaniasis. Am J Trop Med Hyg. 2011; 85(3): 535-9.
49. Boelaert M, Aoun K, Liinev J, Goetghebeur E, Van der Stuyft P. The potential of latent class analysis in diagnostic test validation for canine Leishmania infantum infection. Epidemiol Infect. 1999;123(3): 499–506.
50. Bogdan C, Donhauser N, Doring R, Rollinghoff M, Diefenbach A, Rittig M. Fibroblasts as host cells in latent leishmaniasis. J Exp Med. 2000;191(12): 2121-30.
51. Cousin B, Munoz O, Andre M, Fontanilles A, Dani C, Cousin J. A role for preadipocytes as macrophage-like cells. FASEB J. 1999;13(2): 305-12.
52. Harrison LH, Naidu TG, Drew JS, de Alencar JE, Pearson RD. Reciprocal relationships between undernutrition and the parasitic disease visceral leishmaniasis. Rev Infect Dis. 1986;8(3):447-53.
53. Punda-Polić V, Bradarić N, Grgić D. A 9-year-old with fever and severe muscle pains. Lancet. 1997;349(9066):1666.
54. Cavalier-Smith T. Kingdom protozoa and its 18 phyla. Microbiol Rev. 1993;57(4):953-94.
55. Montoya J, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363(9425): 1965-76.
56. Cuervo G, Simonetti AF, Alegre O, Sanchez-Salado JC, Podzamczer D. Toxoplasma myocarditis: a rare but serious complication in an HIV-infected late presenter. AIDS. 2016;30(14):2253-4.
57. Organization" WH. Global Report UNAIDS report on the global AIDS epidemic 2013. Joint United Nations Programme on HIV/AIDS (UNAIDS); 2013.
58. Gherardi R, Baudrimont M, Lionnet F, Salord JM, Duvivier C, Michon C, et al. Skeletal muscle toxoplasmosis in patients with acquired immunodeficiency syndrome: a clinical and pathological study. Ann Neurol. 1992;32(4):535-42.
59. Wiendl H, Hohlfeld R, Kieseier B. Immunobiology of muscle: advances in understanding an immunological microenvironment. Trends in Immunol. 2005;26(7): 373-80.
60. Eza DE, Lucas SB. Fulminant toxoplasmosis causing fatal pneumonitis and myocarditis. HIV Med. 2006;7(6): 415-20.
61. Murray HW, Rubin BY, Masur H, Roberts RB. Impaired production of lymphokines and immune (gamma) interferon in the acquired immunodeficiency syndrome. N Engl J Med. 1984;310(14): 883-9.
62. Filipowicz A, Coca M, Blair B, Chang P. Acute myocarditis with cardiogenic shock and multiple organ failure, followed by bilateral panuveitis masquerading as endogenous endopthalmitis due to toxoplasma gondii in an immunocopetent patient. Wolters Kluwer: Retinal Cases & Brief Reports; 2019.
63. Herdy G, Herdy A, Almeida P, de Carvalho R, Azevedo F, Azevedo K, et al. Cardiac abnormalities in the acquired immunodeficiency syndrome. A prospective study with a clinical-pathological correlation in twenty-one adult patients. Arq Bras Cardiol. 1999;73(3): 286-90.
64. Klatt E. Cardiovascular Pathology in AIDS. Karger: HIV Infection and the Cardiovascular System 2003: 23-48.
65. Roldan E, Moskowitz L, Hensley G. Pathology of the heart in acquired-immunodeficiency-syndrome. Arch Pathol Lab Med. 1987;111(10):943-6.
66. Strabelli TM, Siciliano RF, Vidal Campos S, Bianchi Castelli J, Bacal F, Bocchi EA, et al. Toxoplasma gondii Myocarditis after Adult Heart Transplantation: Successful Prophylaxis with Pyrimethamine. J Trop Med. 2012;2012:853562.
67. Gomes A, Guimaraes E, Carvalho L, Correa J, Mendonca-Lima L, Barbosa H. Toxoplasma gondii down modulates cadherin expression in skeletal muscle cells inhibiting myogenesis. BMC Microbiology. 2011;11: 110.
68. Gomes AF, Magalhães KG, Rodrigues RM, de Carvalho L, Molinaro R, Bozza PT, et al. Toxoplasma gondii-skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasit Vectors. 2014;7:47.
69. Sullivan WJ, Jeffers V. Mechanisms of Toxoplasma gondii persistence and latency. FEMS Microbiol Rev. 2012;36(3): 717-33.
70. Jin R, Blair S, Warunek J, Heffner R, Blader I, Wohlfert E. Regulatory T Cells Promote Myositis and Muscle Damage in Toxoplasma gondii Infection. J Immunol. 2017;198(1): 352-62.
71. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, et al. A special population of regulatory T cells potentiates muscle repair. Cell. 2013;155(6):1282-95.
72. Takács AC, Swierzy IJ, Lüder CG. Interferon-γ restricts Toxoplasma gondii development in murine skeletal muscle cells via nitric oxide production and immunity-related GTPases. PLoS One. 2012;7(9): e45440.
73. Organization" WH. World Malaria Report 2018. Geneva: World Health Organization: Licence: CC BY-NC-SA 3.0 IGO; 2018.
74. Bethell D, Phuong P, Phuong C, Nosten F, Waller D, Davis T, et al. Electrocardiographic monitoring in severe falciparum malaria. Trans R Soc Trop Med Hyg. 1996; 90(3): 266-9.
75. Bhat S, Alva J, Muralidhara K, Fahad S. Malaria and the heart. BMJ Case Rep. 2012;2012: bcr2012007275.
76. Dev N, Gadpayle A, Sankar J, Choudhary M. An unusual case of heart failure due to Plasmodium vivax infection with a favorable outcome. Rev Soc Bras Med Trop. 2014;47(5): 663-5.
77. Yeo T, Lampah D, Kenangalem E, Tjitra E, Price R, Anstey N. Impaired skeletal muscle microvascular function and increased skeletal muscle oxygen consumption in severe falciparum malaria. J Infect Dis. 2013;207(3): 528-36.
78. Marrelli MT, Brotto M. The effect of malaria and anti-malarial drugs on skeletal and cardiac muscles. Malar J. 2016;15(1): 524.
79. Davis TM, Supanaranond W, Pukrittayakamee S, Holloway P, Chubb P, White NJ. Progression of skeletal muscle damage during treatment of severe falciparum malaria. Acta Trop. 2000;76(3): 271-6.
80. Knochel J, Moore G. Rhabdomyolysis in Malaria. N Engl J Med. 1993;329: 1206-1207
81. Garcia F, Cebrian M, Dgedge M, Casademont J, Bedini J, Neves O, et al. Endothelial cell activation in muscle biopsy samples is related to clinical severity in human cerebral malaria. J Inf Dis. 1999;179(2): 475-83.
82. Fern EB, McNurlan MA, Garlick PJ. Effect of malaria on rate of protein synthesis in individual tissues of rats. Am J Physiol. 1985;249(5 Pt 1):E485-93.
83. Brotto M, Bonewald L. Bone and muscle: Interactions beyond mechanical. Bone. 2015;80:109-14.
84. Davis TM, Pongponratan E, Supanaranond W, Pukrittayakamee S, Helliwell T, Holloway P, et al. Skeletal muscle involvement in falciparum malaria: biochemical and ultrastructural study. Clin Infect Dis. 1999;29(4):831-5.
85. Miller K, White N, Lott J, Roberts J, Greenwood B. Biochemical-evidence of muscle injury in african children with severe malaria. J Infec Dis. 1989;159(1):139-42.
86. Bachmann J, Burte F, Pramana S, Conte I, Brown B, Orimadegun A. Affinity proteomics reveals elevated muscle proteins in plasma of children with cerebral malaria. PLoS Pathog. 2014;10(4): e1004038.
87. Franzen D, Curtius JM, Heitz W, Höpp HW, Diehl V, Hilger HH. Cardiac involvement during and after malaria. Clin Investig. 1992;70(8):670-3.
88. Stanley Imade O, Iguodala Akinnibosun F, Henry Oladeinde B, Iyekowa O. Myocardial dysfunction: a primary cause of death due to severe malaria in a Plasmodium falciparum-Infected humanized mouse model. Iran J Parasitol. 2013;8(4): 499-509.
89. Vuong PN, Richard F, Snounou G, Coquelin F, Rénia L, Gonnet F, et al. Development of irreversible lesions in the brain, heart and kidney following acute and chronic murine malaria infection. Parasitol. 1999;119( Pt 6): 543-53.
90. Ehrhardt S, Wichmann D, Hemmer CJ, Burchard GD, Brattig NW. Circulating concentrations of cardiac proteins in complicated and uncomplicated Plasmodium falciparum malaria. Trop Med Int Health. 2004;9(10): 1099-103.
91. Ehrhardt S, Mockenhaupt FP, Anemana SD, Otchwemah RN, Wichmann D, Cramer JP, et al. High levels of circulating cardiac proteins indicate cardiac impairment in African children with severe Plasmodium falciparum malaria. Microbes Infect. 2005;7(11-12): 1204-10.
92. Günther A, Grobusch MP, Slevogt H, Abel W, Burchard GD. Myocardial damage in falciparum malaria detectable by cardiac troponin T is rare. Trop Med Int Health. 2003;8(1):30-2.
93. Aviles RJ, Askari AT, Lindahl B, Wallentin L, Jia G, Ohman EM, et al. Troponin T levels in patients with acute coronary syndromes, with or without renal dysfunction. N Engl J Med. 2002;346(26):2047-52.
94. Lang K, Börner A, Figulla HR. Comparison of biochemical markers for the detection of minimal myocardial injury: superior sensitivity of cardiac troponin-T ELISA. J Intern Med. 2000;247(1):119-23.
95. Wennicke K, Debierre-Grockiego F, Wichmann D, Brattig NW, Pankuweit S, Maisch B, et al. Glycosylphosphatidylinositol-induced cardiac myocyte death might contribute to the fatal outcome of Plasmodium falciparum malaria. Apoptosis. 2008;13(7): 857-66.