Peptide Inhibitors of Viral Membrane Fusion

Main Article Content

Nejat Düzgüneş Krystyna Konopka

Abstract

Lipid-enveloped viruses, including HIV-1 and SARS-CoV-2, infect their host cells by fusion either directly with the plasma membrane or with the endosome membrane following endocytosis. Biophysical insights into the conformational changes of viral fusion proteins have led to the development of peptide inhibitors of these changes, and hence of membrane fusion. The peptide T-20 (Enfuvirtide) inhibits HIV-1-cell fusion and is being used clinically. The cholesterol-conjugated C34 peptide has an IC50 of 4 pM for inhibiting HIV-1 infectivity, much lower than that of plain C34 and T-20. A peptide (P155-185-chol) corresponding to a segment of the post-fusion structure of influenza virus hemagglutinin, also coupled to cholesterol, inhibits infection by the A/H3N2 subtype with an IC50 of 0.4 μM. Myrcludex B, a myristoylated lipopeptide, inhibits the entry of hepatitis B virus and hepatitis D virus into hepatocytes with an IC50 of 80 pM. Dimer peptides (HRC2 and HRX4) derived from the measles virus F-protein and coupled to cholesterol inhibit measles virus infection at IC50 values of less than 1 nM to 2 nM. Peptides derived from the E protein of Japanese encephalitis virus inhibit infection at nanomolar IC50 values.


 The COVID-19 pandemic has prompted numerous studies to design peptide inhibitors of the SARS-CoV-2 spike protein-mediated membrane fusion. The coupling of a lipidic anchor like cholesterol to some of these peptides enhances the antiviral effect of the peptides, lowering the IC50 to low nanomolar concentrations. It is highly likely that peptides against SARS-CoV-2 will soon be evaluated in clinical trials.

Article Details

How to Cite
DÜZGÜNEŞ, Nejat; KONOPKA, Krystyna. Peptide Inhibitors of Viral Membrane Fusion. Medical Research Archives, [S.l.], v. 8, n. 9, sep. 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2244>. Date accessed: 18 apr. 2024. doi: https://doi.org/10.18103/mra.v8i9.2244.
Section
Research Articles

References

1. Wild CT, Shugars DC, Greenwell TK, McDanal CB, Matthews TJ. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A. 1994;91(21):9770–9774.
DOI: 10.1073/pnas.91.21.9770.

2. Su X, Wang Q, Wen Y, Jiang S, Lu L. Protein- and peptide-based virus inactivators: inactivating viruses before their entry into cells. Front Microbiol. 2020;11:1063. DOI: 10.3389/fmicb.2020.01063.

3. Jardetzky TS, Lamb RA. Activation of paramyxovirus membrane fusion and virus entry. Curr Opin Virol. 2014;5:24–33. DOI:10.1016/j.coviro.2014.01.005.

4. Weissenhorn W, Hinz A, Gaudin Y. Virus membrane fusion. FEBS Lett. 2007;581(11):2150-2155. doi:10.1016/j.febslet.2007.01.093.

5. Heinz FX, Allison SL. The machinery for flavivirus fusion with host cell membranes. Curr Opin Microbiol. 2001;4(4):450-455. DOI: 10.1016/s1369-5274(00)00234-4.

6. Kielian M, Rey FA. Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol. 2006;4(1):67–76. DOI: 10.1038/nrmicro1326.

7. Modis Y. Class II fusion proteins. Adv Exp Med Biol. 2013;790:150-166. DOI: 10.1007/978-1-4614-7651-1_8.

8. Backovic M, Jardetzky TS. Class III viral membrane fusion proteins. Curr Opin Struct Biol. 2009;19(2):189–196.
DOI: 10.1016/j.sbi.2009.02.012.
9. Baquero E, Albertini AA, Gaudin Y. Recent mechanistic and structural insights on class III viral fusion glycoproteins. Curr Opin Struct Biol. 2015;33:52–60.
DOI: 10.1016/j.sbi.2015.07.011.

10. Nicola AV. Herpesvirus entry into host cells mediated by endosomal low pH. Traffic. 2016;17(9):965–975.
DOI: 10.1111/tra.12408.

11. Richardson CD, Scheid A, Choppin PW. Specific inhibition of paramyxovirus and myxovirus replication by oligopeptides with amino acid sequences similar to those at the N-termini of the F1 or HA2 viral polypeptides. Virology. 1980;105(1):205–222.

12. Kelsey DR, Flanagan TD, Young J, Yeagle PL. Peptide inhibitors of enveloped virus infection inhibit phospholipid vesicle fusion and Sendai virus fusion with phospholipid vesicles. J Biol Chem. 1990;265(21):12178–12183.

13. Konopka K, Pretzer E, Düzgüneş N. Differential effects of a hydrophobic tripeptide on human immunodeficiency virus type 1 (HIV-1)-induced syncytium formation and viral infectivity. Biochem Biophys Res Commun. 1995;208(1):75–81.
DOI: 10.1006/bbrc.1995.1307.

14. Rapaport D, Ovadia M, Shai Y. A synthetic peptide corresponding to a conserved heptad repeat domain is a potent inhibitor of Sendai virus-cell fusion: an emerging similarity with functional domains of other viruses. EMBO J. 1995;14(22):5524-5531.

15. Wang Q, Finzi A, Sodroski J. The conformational states of the HIV-1 envelope glycoproteins. Trends Microbiol. 2020;28(8):655–667.
DOI: 10.1016/j.tim.2020.03.007.

16. Checkley MA, Luttge BG, Freed EO. HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol. 2011;410:582–608.
DOI: 10.1016/j.jmb.2011.04.042.

17. Nara PL, Hwang KM, Rausch DM, Lifson JD, Eiden LE. CD4 antigen-based antireceptor peptides inhibit infectivity of human immunodeficiency virus in vitro at multiple stages of the viral life cycle. Proc Natl Acad Sci U S A. 1989;86(18):7139–7143.

18. Slepushkin VA, Salem II, Andreev SM, Dazin P, Düzgüneş N. Targeting of liposomes to HIV-1-infected cells by peptides derived from the CD4 receptor. Biochem Biophys Res Commun. 1996; 227(3):827–33.
DOI: 10.1006/bbrc.1996.1592.

19. Chen CH, Matthews TJ, McDanal CB, Bolognesi DP, Greenberg ML. A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J Virol. 1995;69(6):3771–3777. DOI: 10.1128/JVI.69.6.3771-3777.1995.

20. Jiang S, Debnath AK. Development of HIV entry inhibitors targeted to the coiled-coil regions of gp41. Biochem Biophys Res Commun. 2000;269(3):641–646. DOI: 10.1006/bbrc.1999.1972.

21. Kilby JM, Hopkins S, Venetta TM, DiMassimo B, Cloud GA, Lee JY, Alldredge L, Hunter E, Lambert D, Bolognesi D, Matthews T, Johnson MR, Nowak MA, Shaw GM, Saag MS. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med. 1998;4(11):1302–1307.
DOI: 10.1038/3293.

22. Derdeyn CA, Decker JM, Sfakianos JN, Wu X, O'Brien WA, Ratner L, Kappes JC, Shaw GM, Hunter E. Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol. 2000;74:8358–8367.
DOI: 10.1128/jvi.74.18.8358-8367.2000.

23. Derdeyn CA, Decker JM, Sfakianos JN, Zhang Z, O'Brien WA, Ratner L, Shaw GM, Hunter E. Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J Virol. 2001;75(18):8605–8614.

24. Kliger Y, Levanon EY.BMC Microbiol. 2003 Sep 21;3:20. Cloaked similarity between HIV-1 and SARS-CoV suggests an anti-SARS strategy. BMC Microbiol. 2003;21;3:20. DOI: 10.1186/1471-2180-3-20.

25. Wang C, Cheng S, Zhang Y, Ding Y, Chong H, Xing H, Jiang S, Li X, Ma L. long-acting HIV-1 fusion inhibitory peptides and their mechanisms of action. Viruses. 2019;11(9):811. DOI: 10.3390/v11090811.

26. Liu S, Lu H, Niu J, Xu Y, Wu S, Jiang S. Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J Biol Chem. 2005;280(12):11259–11273.
DOI: 10.1074/jbc.M411141200.

27. Ingallinella P, Bianchi E, Ladwa NA, Wang Y-J, Hrin R, Veneziano M, Bonelli F, Ketas TJ, Moore JP, Miller MD, Pessi A. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc Natl Acad Sci U S A. 2009;106(14):5801-5806.
DOI: 10.1073/pnas.0901007106.

28. Xu Y, Lou Z, Liu Y, Pang H, Tien P, Gao GF, Rao Z. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem. 2004;279(47):49414–49419.
DOI: 10.1074/jbc.M408782200.

29. Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses. 2012;4(6):1011–1033. DOI: 10.3390/v4061011.

30. Matsuyama S., Ujike M., Morikawa S., Tashiro M., Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci U S A. 2005;102:12543–12547. DOI: 10.1073/pnas.0503203102.

31. Alanagreh L, Alzoughool F, Atoum M. The human coronavirus disease COVID-19: its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens. 2020;9(5):331. DOI:10.3390/pathogens9050331

32. Liu S, Xiao G, Chen Y, He Y, Niu J, Escalante CR, Xiong H, Farmar J, Debnath AK, Tien P, Jiang S. Interaction between heptad repeat 1 and 2 regions in spike protein of SARS-associated coronavirus: implications for virus fusogenic mechanism and identification of fusion inhibitors. Lancet. 2004;363(9413):938–947.
DOI: 10.1016/S0140-6736(04)15788-7.

33. Bosch BJ, Martina BEE, van der Zee R, Lepault J, Haijema BJ, Versluis C, Heck AJR, de Groot R, Osterhaus ADME, Rottier PJM. Severe acute respiratory syndrome coronavirus (SARS-CoV) infection inhibition using spike protein heptad repeat-derived peptides. Proc Natl Acad Sci U S A. 2004;101(22): 8455–8460.
DOI: 10.1073/pnas.0400576101.

34. Zhu J, Xiao G, Xu Y, Yuan F, Zheng C, Liu Y, Yan H, Cole DK, Bell JI, Rao Z, Tien P, Gao GF. Following the rule: formation of the 6-helix bundle of the fusion core from severe acute respiratory syndrome coronavirus spike protein and identification of potent peptide inhibitors. Biochem Biophys Res Commun. 2004;319(1):283–288. DOI: 10.1016/j.bbrc.2004.04.141.

35. Yuan K, Yi L, Chen J, Qu X, Qing T, Rao X, Jiang P, Hu J, Xiong Z, Nie Y, Shi X, Wang W, Ling C, Yin X, Fan K, Lai L, Ding M, Deng H. Suppression of SARS-CoV entry by peptides corresponding to heptad regions on spike glycoprotein. Biochem Biophys Res Commun. 2004;319(3):746–752.
DOI: 10.1016/j.bbrc.2004.05.046.

36. Liu IJ, Kao CL, Hsieh SC, Wey MT, Kan LS, Wang WK. Identification of a minimal peptide derived from heptad repeat (HR) 2 of spike protein of SARS-CoV and combination of HR1-derived peptides as fusion inhibitors. Antiviral Res. 2009;81(1):82–87. doi:10.1016/j.antiviral.2008.10.001

37. Ujike M, Nishikawa H, Otaka A, Yamamoto N, Yamamoto N, Matsuoka M, Kodama E, Fujii N, Taguchi F. Heptad repeat-derived peptides block protease-mediated direct entry from the cell surface of severe acute respiratory syndrome coronavirus but not entry via the endosomal pathway. J Virol. 2008;82(1):588–592.
DOI: 10.1128/JVI.01697-07.

38. Zaki AM, van Boheemen S, Bestebroer TM, Osterhaus ADME, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med. 2012;367:1814–1820.
DOI: 10.1056/NEJMoa1211721.

39. Lu L, Liu Q, Zhu Y, Chan KH, Qin L, Li Y, Wang Q, Chan JF, Du L, Yu F, Ma C, Ye S, Yuen KY, Zhang R, Jiang S. Structure-based discovery of Middle East respiratory syndrome coronavirus fusion inhibitor. Nat Commun. 2014;5:3067.
DOI: 10.1038/ncomms4067.

40. Channappanavar R, Lu L, Xia S, Du L, Meyerholz DK, Perlman S, Jiang S.Version 2. Protective effect of intranasal regimens containing peptidic Middle East respiratory syndrome coronavirus fusion inhibitor against MERS-CoV infection. J Infect Dis. 2015;212(12):1894–1903.
DOI: 10.1093/infdis/jiv325.

41. Sun Y, Zhang H, Shi J, Zhang Z, Gong R. Identification of a novel inhibitor against Middle East respiratory syndrome coronavirus. Viruses 2017;9(9):255. DOI: 10.3390/v9090255.

42. Li H, Liu Z, Ge J. Scientific research progress of COVID‐19/SARS‐CoV‐2 in the first five months. J Cell Mol Med. 2020;24(12):6558–6570. DOI: 10.1111/jcmm.15364.

43. Zhu Y, Yu D, Yan H, Chong H, He Y. Design of potent membrane fusion inhibitors against SARS-CoV-2, an emerging coronavirus with high fusogenic activity. J Virol. 2020;94(14):e00635-20.
DOI: 10.1128/JVI.00635-20.

44. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, Qi F, Bao L, Du L, Liu S, Qin C, Sun F, Shi Z, Zhu Y, Jiang S, Lu L. Inhibition of SARS-CoV-2 (previously 2019-nCov) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res. 2020;30(4):343–355.
DOI: 10.1038/s41422-020-0305-x.

45. Hamilton BS, Whittaker GR, Daniel S. Influenza virus-mediated membrane fusion: determinants of hemagglutinin fusogenic activity and experimental approaches for assessing virus fusion. Viruses. 2012;4(7):1144–1168.
DOI: 10.3390/v4071144.

46. Nunes-Correia I, Eulálio A, Nir S, Pedroso de Lima MC. Caveolae as an additional route for influenza virus endocytosis in MDCK cells. Cell Mol Biol Lett. 2004;9(1):47–60.

47. White JM, Wilson IA. Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin. J Cell Biol. 1987;105(6 Pt 2):2887–2896.
DOI: 10.1083/jcb.105.6.2887.

48. Stegmann T, Booy FP, Wilschut J. Effects of low pH on influenza virus. Activation and inactivation of the membrane fusion capacity of the hemagglutinin. J Biol Chem. 1987;262(36):17744–17749.

49. Düzgüneş N, Pedroso de Lima MC, Stamatatos L, Flasher D, Alford D, Friend DS, Nir S. Fusion activity and inactivation of influenza virus: kinetics of low pH-induced fusion with cultured cells. J Gen Virol. 1992;73(Pt 1):27–37. DOI: 10.1099/0022-1317-73-1-27.

50. Ramalho-Santos J, Nir S, Düzgüneş N, de Carvalho AP, Pedroso de Lima MC. A common mechanism for influenza virus fusion activity and inactivation. Biochemistry 1993;32(11):2771–2779.
DOI: 10.1021/bi00062a006.

51. Düzgüneş N, Gambale F. Membrane action of synthetic N-terminal peptides of influenza virus hemagglutinin and its mutants. FEBS Lett. 1988;227(2):110–114. DOI: 10.1016/0014-5793(88)80879-2.

52. Düzgüneş N, Shavnin SA. Membrane destabilization by N-terminal peptides of viral envelope proteins. J Membr Biol. 1992;128(1):71–80.DOI: 10.1007/BF00231872.

53. Matsubara T, Onishi A, Saito T, Shimada A, Inoue H, Taki T, Nagata K, Okahata Y, Sato T. Sialic acid-mimic peptides as hemagglutinin inhibitors for anti-influenza therapy. J Med Chem. 2010;53(11):4441–4449. doi:10.1021/jm1002183

54. Jones JC, Turpin EA, Bultmann H, Brandt CR, Schultz-Cherry S. Inhibition of influenza virus infection by a novel antiviral peptide that targets viral attachment to cells. J Virol. 2006;80(24):11960–11967.
DOI: 10.1128/JVI.01678-06.

55. Perrier A, Eluard M, Petitjean M, Vanet A. In silico design of new inhibitors against hemagglutinin of influenza. J Phys Chem B. 2019;123(3):582–592.
DOI: 10.1021/acs.jpcb.8b10767.

56. Lee KK, Pessi A, Gui L, Santoprete A, Talekar A, Moscona A, Porotto M. Capturing a fusion intermediate of influenza hemagglutinin with a cholesterol-conjugated peptide, a new antiviral strategy for influenza virus. J Biol Chem. 2011;286(49):42141–42149. DOI: 10.1074/jbc.M111.254243.

57. Figueira TN, Augusto MT, Rybkina K, Stelitano D, Noval MG, Harder OE, Veiga AS, Huey D, Alabi CA, Biswas s, Niewesk S, Moscona A, Santoc MC, Castanho MARB, Porotto M. Effective in vivo targeting of influenza virus through a cell-penetrating/fusion inhibitor tandem peptide anchored to the plasma membrane. Bioconjug Chem. 2018;29(10):3362–3376.
DOI: 10.1021/acs.bioconjchem.8b00527.

58. Seeger C, Mason WS. Hepatitis B virus biology. Microbiol Mol Biol Rev. 2000;64(1):51–68.
DOI: 10.1128/mmbr.64.1.51-68.2000.

59. Glebe D, Urban S. Viral and cellular determinants involved in hepadnaviral entry. World J Gastroenterology. 2007;13(1):22–38. DOI: 10.3748/wjg.v13.i1.22.

60. Glebe D, Bremer CM. The molecular virology of hepatitis B virus. Semin Liver Dis. 2013;33(2):103–112. DOI: 10.1055/s-0033-1345717.

61. Bonino F, Heermann KH, Rizzetto M, Gerlich WH. Hepatitis delta virus: protein composition of delta antigen and its hepatitis B virus- derived envelope. J Virol. 1986;58(3):945–950.
DOI: 10.1128/JVI.58.3.945-950.1986.

62. Sureau C, Fournier-Wirth C, Maurel P. Role of N glycosylation of hepatitis B virus envelope proteins in morphogenesis and infectivity of hepatitis delta virus. J Virol. 2003;77(9):5519–5523.
DOI: 10.1128/jvi.77.9.5519-5523.2003.

63. Mentha N, Clement S, Negro F, Alfaiate D. A review on hepatitis D: from virology to new therapies. Review. J Adv Res. 2019;17:3-15. DOI: 10.1016/j.jare.2019.03.009.

64. Glebe D, Urban S, Knoop EV, Çaǧ N, Krass P. Grün S, Bulavaite A, Sasnauskas K, Gerlich WH. Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides and Tupaia hepatocytes. Gastroenterol. 2005;129(1):234–245
DOI: 10.1053/j.gastro.2005.03.090.

65. Le Duff Y, Blanchet M, Sureau C. The Pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent. J Virol. 2009;83(23):12443–12451.
DOI: 10.1128/JVI.01594-09

66. Lempp FA, Urban S. Inhibitors of hepatitis B virus attachment and entry. Intervirology 2014;57(3-4):151–157. DOI: 10.1159/000360948

67. Barrera A, Guerra B, Notvall L, Lanford RE. Mapping of the hepatitis B virus pre-S1 domain involved in receptor recognition. J Virol. 2005;79(15):9786¬–9798.
DOI: 10.1128/JVI.79.15.9786-9798.2005.

68. Sureau C. The role of the HBV envelope proteins in the HDV replication cycle. Curr Top Microbiol Immunol. 2006;307:113–131. DOI: 10.1007/3-540-29802-9_6.

69. Hughes SA, Wedemeyer H, Harrison PM. Hepatitis delta virus. Lancet. 2011;378(9785):73–85.
DOI: 10.1016/S0140-6736(10)61931-9

70. Gripon P, Le Seyec J, Rumin S, Guguen-Guillouzo C. Myristylation of the hepatitis B virus large surface protein is essential for viral infectivity. Virology. 1995;213(2):292–299. DOI: 10.1006/viro.1995.0002.

71. Blanchet M, Sureau C. Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J Virol. 2007;81(11):5841–5849.
DOI: 10.1128/JVI.00096-07.

72. Le Duff Y, Blanchet M, Sureau C. The pre-S1 and antigenic loop infectivity determinants of the hepatitis B virus envelope proteins are functionally independent. J Virol. 2009;83(23):12443–12451.
DOI: 10.1128/JVI.01594-09

73. Persing DH, Varmus HE, Ganem D. The pre-S1 protein of hepatitis B virus is acylated at its amino terminus with myristic acid. J Virol. 1987;61(5):1672–1677.
DOI: 10.1128/JVI.61.5.1672-1677.1987.

74. Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P. Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol. 1999;73(3):2052–2057. DOI: 10.1128/JVI.73.3.2052-2057.1999.

75. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A. 2002;99(24):15655–15660.
DOI: 10.1073/pnas.232137699.

76. Gripon P, Cannie I, Urban S. Efficient inhibition of hepatitis B virus infection by acylated peptides derived from the large viral surface protein. J Virol. 2005;79(3):1613–1622. DOI:10.1128/JVI.79.3.1613–1622.2005

77. Meier A, Mehrle S, Weiss TS, Mier W, Urban S. Myristoylated PreS1- domain of the hepatitis B virus L-protein mediates specific binding to differentiated hepatocytes. Hepatology. 2013;58(1):31–42.
DOI: 10.1002/hep.26181.

78. Abou-Jaoude G, Sureau C. Role of the antigenic loop of the hepatitis B virus envelope proteins in infectivity of hepatitis delta virus. J Virol. 2005;79(16):10460–10466. DOI: 10.1128/JVI.79.16.10460-10466.2005.

79. Abou-Jaoude G, Sureau C. Entry of hepatitis delta virus requires the conserved cysteine residues of the hepatitis B virus envelope protein antigenic loop and is blocked by inhibitors of thiol-disulfide exchange. J Virol. 2007;81(23):13057-13066.
DOI: 10.1128/JVI.01495-07.

80. Salisse J, Sureau C. A function essential to viral entry underlies the hepatitis B virus “a” determinant. J Virol. 2009;83(18):9321–9328. DOI: 10.1128/JVI.00678-09.

81. Schulze A, Gripon P, Urban S. Hepatitis B virus infection initiates with a large surface protein–dependent binding to heparan sulfate proteoglycans. Hepatology. 2007;46(6):1759–1768.
DOI: 10.1002/hep.21896.

82. Sureau C, Salisse J. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus a-determinant. Hepatology. 2013;57(3):985–994.
DOI: 10.1002/hep.26125.

83. Yan H, Zhong G, Xu G, He W, Jing Z, Gao Z, Huang Y, Qi Y, Peng B, Wang H, Fu L, Song M, Chen P, Gao W, Ren B, Sun Y, Cai T, Feng X, Sui J, Li W. Sodium taurocholate cotransporting polypeptide is a functional receptor for human hepatitis B and D virus. ELife. 2012;1:e00049.
DOI: 10.7554/eLife.00049

84. Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Falth M, Stindt J, Koniger C, Nassal M, Kubitz R, Sultmann H, Urban S: Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 2014;146(4):1070–1083. DOI: 10.1053/j.gastro.2013.12.024.

85. Iwamoto M, Saso W, Nishioka K, Ohashi H, Sugiyama R, Ryo A, Ohki M, Yun J-H, Park S-Y, Ohshima T, Suzuki R, Aizaki H, Muramatsu M, Matano T, Iwami S, Sureau C, Wakita T, Watashi K. The machinery for endocytosis of epidermal growth factor receptor coordinates the transport of incoming hepatitis B virus to the endosomal network. J Biol Chem. 2020;295(3):800–807.
DOI: 10.1074/jbc.AC119.010366.

86. Herrscher C, Roingeard P, Blanchard E. Hepatitis B virus entry into cells. Review. Cells. 2020;9(6):1486;
DOI: 10.3390/cells9061486

87. Petersen J, Dandri M, Mier W, Lütgehetmann M, Volz T, von Weizsäcker F, Haberkorn U, Fischer L, Pollok J-M, Erbes B, Seits S, Urban S. Prevention of hepatitis B virus infection in vivo by entry inhibitors derived from the large envelope protein. Nat Biotechnol. 2008;26(3):335–341. DOI: 10.1038/nbt1389.

88. Volz T, Allweiss L, Ben M, Barek M, Warlich M, Lohse AW, Pollok JM, Alexandrov A, Urban S, Peterson J, Lütgehetmann M, Dandri M. The entry inhibitor myrcludex- B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with Hepatitis B Virus. J Hepatol. 2013;58(5):861–867. DOI: 10.1016/j.jhep.2012.12.008.
89. Venkatakrishnan B, Zlotnick A. The structural biology of hepatitis B virus: form and function. Annu Rev Virol. 2016;3(1):429–451. DOI:10.1146/annurev-virology-110615-042238.
90. Sabahi A. Hepatitis C Virus entry: the early steps in the viral replication cycle. Review. Virol J. 2009;6:117 DOI:10.1186/1743-422X-6-117

91. Lindenbach BD, Rice CM. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol. 2013;11(10):688–700. DOI:10.1038/nrmicro3098

92. Dubuisson J, Cosset F-L. Virology and cell biology of the hepatitis C virus life cycle – An update. J Hepatol. 2014;61:S3–S13. DOI:10.1016j.hep.2014.06.031

93. André P, Komurian-Pradel F, Deforges S, Perret M, Berland JL, Sodoyer M, Pol S, Bréchot C, Paranhos-Baccalà G, Lotteau V. Characterization of low- and very-low density hepatitis C virus RNA-containing particles. J Virol. 2002;76(14):6919–6928.
DOI: 10.1128/JVI.76.14.6919–6928.2002

94. Kapadia SB, Barth H, Baumert T, McKeating JA, Chisari FV. Initiation of hepatitis C virus infection is dependent on cholesterol and cooperativity between CD81 and scavenger receptor B type I. J Virol. 2007;81(1):374–383.
DOI: 10.1128/JVI.01134-06

95. Wrensch F, Crouchet E, Ligat G, Zeisel MB, Keck Z-Y, Foung SKH, Schuster C, Baumert TF. Hepatitis C virus (HCV)-apolipoprotein interactions and immune evasion and their impact on HCV vaccine design. Front Immunol. 2018;9:1436. DOI: 10.3389/fimmu.2018.01436.

96. Zhu YZ, Qian XJ, Zhao P, Qi ZT. How hepatitis C virus invades hepatocytes: the mystery of viral entry. World J Gastroenterol. 2014;20(13):3457–3467. DOI:10.3748/wjg.v20.i13.3457

97. Sabahi A, Uprichard SL, Wimley WC, Dash S, Garry RF. Unexpected structural of features of the hepatitis C virus envelope protein 2 ectodomain. J Virol. 2014;88(18):10280–10288.
DOI: 10.1128/JVI.00874-14.
98. Fofana I, Jilg N, Chung RT, Baumer TF. Entry inhibitors and future treatment of hepatitis C. Antiviral Res. 2014;104:136–142. DOI.10.1016/j.antiviral.2014.02.001

99. Crouchet W, Baumert TF, Schuster C. Hepatitis C virus-apolipoprotein interactions: molecular mechanisms and clinical impact. Review. Expert Rev Proteomics. 2017;14:593–606.
DOI: 10.1080/14789450.2017.1344102

100. Qian X-J, Zhu Y-Z, Zhao P, Qi Z-T. Entry inhibitors: New advances in HCV treatment. Emerg Microbes Infect. 2016;5,e3; DOI: 10.1038/emi.2016.3

101. Chi X, Niu Y, Cheng M, Liu X, Feng Y, Zheng F, Fan J, KI X, Jin Q, Zhong J, Li Y-P, Yang W. Identification of a potent and broad-spectrum hepatitis C virus fusion inhibitory peptide from the E2 stem domain. Sci Rep. 2016;6:25224 DOI: 10.1038/srep25224 1

102. Alhammad YM, Maharajh S, Butcher R, Eden JS, White PA, Poumbourios P, Drummer HE. Longitudinal sequence and functional evolution within glycoprotein E2 in hepatitis C virus genotype 3a infection. PLoS One 2015;10: e0126397.
DOI: 10.1371/journal.pone.0126397

103. Zeisel MB, Fofana I, Fafi-Kremer, Baumert TF. Hepatitis C virus entry into hepatocytes: Molecular mechanisms and targets for antiviral therapies. Review. J Hepatol. 2011;54(3):566–576.
DOI: 10.1016/j.jhep.2010.10.014.

104. Zeisel MB, Felmlee DJ, Baumert TF. Hepatitis C virus entry. Review. Curr Top Microbiol Immunol. 2013;369:87–112. DOI:10.1007/978-3-642-27340-7_4.

105. Douan F, Lavellette D, Cosset F-L. The mechanism of HCV entry into host cells. Prog Mol Biol Transl Science. 2015;129:63–106. Elsevier Inc. ISSN 1877.1173.
DOI:10.1016/bs.pmbts.2014.10.003

106. Chang C-C, Hsu H-J, Yen J-H, Lo S-Y, Liou J-W. A sequence in the loop domain of hepatitis C virus E2 protein identified in silico as crucial for the selective binding to human CD81. PLoS One. 2017;12(5):e0177383. DOI: 10.1371/journal.pone.0177383

107. Colpitts CC, Pei-Ling Tsai P-L, Mirjam B, Zeisel MB. Hepatitis C virus entry: an intriguingly complex and highly regulated process. Review. Int J Mol Sci. 2020;21(6):2091.
DOI: 10.3390/ijms21062091

108. Whidby J, Mateu G, Scarborough H, Demeler B, Grakoui A, Marcotrigiano J. Blocking hepatitis C virus infection with recombinant form of envelope protein 2 ectodomain. J Virol. 2009; 83(21):11078–11089. DOI: 10.1128/JVI.00800-09.

109. Krey T, d’Alayer J, Kikuti CM, Saulnier A, Damier-Piolle L, Petitpas I. The disulfide bonds in glycoprotein E2 of hepatitis C virus reveal the tertiary organization of the molecule. PLoS Pathog. 2010; 6:e1000762. DOI: 10.1371/journal.ppat.1000762.

110. Kong L, Giang E, Nieusma T, Kadam RU, Cogburn KE, Hua Y, Dai X, Stanfield RL, Burton DR, Ward AB, Wilson IA, Law M. Hepatitis C virus envelope glycoprotein core structure. Science. 2013;342(6162):1090–1094.
DOI: 10.1126/science.1243876

111. Tong Y, Lavillette D, Li Q, Zhong J. Role of hepatitis C virus envelope glycoprotein E1 in virus entry and assembly. Front Immunol. 2018;9:1411
DOI: 10.3389/fimmu.2018.01411.

112. Douam F, Fusil F, Enguehard M, Dib L, Nadalin F, Loïc Schwaller L. A protein coevolution method uncovers critical features of the hepatitis C virus fusion mechanism. PLoS Pathog. 2018;14: e1006908. DOI:10.1371/journal.ppat.1006908.

113. Düzgüneş N. Medical Microbiology and Immunology for Dentistry. Quintessence Publishing, Chicago, ix+293 pp (2016).

114. Moss WJ, Griffin DE. Global measles elimination. Nat Rev Microbiol. 2006;4(12):900–908.
DOI: 10.1038/nrmicro1550.

115. Azarm KD, Lee B. Differential features of fusion activation within the Paramyxo-viridae. Viruses. 2020;12(2):161.
DOI: 10.3390/v12020161.

116. Steffen DL, Xu K, Nikolov DB, Broder CC. Henipavirus mediated membrane fusion, virus entry and targeted therapeutics. Viruses. 2012;4(2):280v308.
DOI: 10.3390/v4020280.

117. Mathieu C, Augusto MT, Niewiesk S, Horvat B, Palermo LM, Sanna G, Maddedu S, Huey D, Castanho MARB, Porotto M, Santos NC, Moscona A. Broad spectrum antiviral activity for paramyxoviruses is modulated by biophysical properties of fusion inhibitory peptides. Sci Rep. 2017;7:43610. DOI: 10.1038/srep43610.

118. Lambert DM, Barney S, Lambert AL, Guthrie K, Medinas R, Davis DE, Bucy T, Erickson J, Merutka G, Petteway SR Jr. Peptides from conserved regions of paramyxovirus fusion (F) proteins are potent inhibitors of viral fusion. Proc Natl Acad Sci U S A. 1996;93(5):2186–2191. DOI: 10.1073/pnas.93.5.2186.

119. Yao Q, Compans RW. Peptides corresponding to the heptad repeat sequence of human parainfluenza virus fusion protein are potent inhibitors of virus infection. Virology. 1996;223(1):103–112. DOI: 10.1006/viro.1996.0459.

120. Welsch JC, Talekar A, Mathieu C, Pessi A, Moscona A, Horvat B, Porotto M. Fatal measles virus infection prevented by brain-penetrant fusion inhibitors. J Virol. 2013;87(24):13785–13794. DOI: 10.1128/JVI.02436-13.

121. Figueira TN, Palermo LM, Veiga AS, Huey D, Alabi A, Santos NC, Welsch JC, Mathieu C, Horvat B, Niewiesk S, Moscona A, Castanho MARB, Porotto M. In vivo efficacy of measles virus fusion protein-derived peptides is modulated by the properties of self-assembly and membrane residence. J Virol. 2016;91(1):e01554-16. DOI: 10.1128/JVI.01554-16.

122. Porotto M, Yokoyama CC, Palermo LM, Mungall B, Aljofan M, Cortese R, Pessi A, Moscona A. Viral entry inhibitors targeted to the membrane site of action. J Virol. 2010;84(13):6760–6768. doi:10.1128/JVI.00135-10.

123. Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh S-C, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA. Biochemistry and molecular biology of flaviviruses. Chem Rev. 2018;118(8):4448–4482. DOI: 10.1021/acs.chemrev.7b00719.

124. Mukhopadhyay S, Kuhn RJ, Rossmann MG. A structural perspective of the flavivirus life cycle. Nat Rev Microbiol. 2005;3(1):13–22. DOI: 10.1038/nrmicro1067.

125. Laureti M, Narayanan D, Rodriguez-Andres J, Fazakerley JK, Kedzierski L. Flavivirus receptors: diversity, identity, and cell entry. Front Immunol. 2018;9:2180. DOI: 10.3389/fimmu.2018.02180.

126. Perera-Lecoin M, Meertens L, Carnec X, Amara A. Flavivirus entry receptors: an update. Viruses. 2013;6(1):69–88. DOI: 10.3390/v6010069.

127. Kimura T, Ohyama A. Association between the pH-dependent conformational change of West Nile flavivirus E protein and virus-mediated membrane fusion. J Gen Virol. 1988;69 (Pt 6):1247–1254. DOI: 10.1099/0022-1317-69-6-1247.

128. Schmidt AG, Yang PL, Harrison SC. Peptide inhibitors of dengue-virus entry target a late-stage fusion intermediate. PLoS Pathog. 2010;6(4):e1000851. DOI: 10.1371/journal.ppat.1000851.

129. Chen L, Liu Y, Wang S, Sun J, Wang P, Xin Q, Zhang L, Xiao G, Wang W. Antiviral activity of peptide inhibitors derived from the protein E stem against Japanese encephalitis and Zika viruses. Antiviral Res. 2017;141:140–149.
DOI: 10.1016/j.antiviral.2017.02.009.

130. Costin JM, Jenwitheesuk E, Lok SM, Hunsperger E, Conrads KA, Fontaine KA, Rees CR, Rossman MG, Isern S, Samudrala R, Michael SF. Structural optimization and de novo design of dengue virus entry inhibitory peptides. PLoS Negl Trop Dis. 2010;4(6):e721. DOI: 10.1371/journal.pntd.0000721.

131. Berkhout B, Eggink D, Sanders RW. Is there a future for antiviral fusion inhibitors? Curr Opin Virol. 2012;2(1):50–59. DOI: 10.1016/j.coviro.2012.01.002.

132. Gerold G, Bruening J, Weigel B, Pietschmann T. Protein interactions during the flavivirus and hepacivirus life cycle. Mol Cell Proteomics. 2017;16(4 suppl 1):S75–S91. doi:10.1074/mcp.R116.065649