Oxidative Stress, Antioxidant Defenses, COVID-19 and Pollution

Main Article Content

Selva Rivas-Arancibia Jennifer Balderas-Miranda Lizbeth Belmont-Zúñiga Martín Martínez-Jáquez Eduardo Hernández-Orozco Vanessa Cornejo-Trejo Citlali Reséndiz-Ramos Iván Cruz-García Isaac Espinosa-Caleti Marlen Valdés-Fuentes Erika Rodríguez Martínez

Abstract

Patients with degenerative diseases present a chronic oxidative stress state, which puts them at a disadvantage when facing viral infections such as COVID-19. This is because there is a close relationship between redox signaling and this inflammatory response. Therefore, chronic changes in the redox balance cause alterations in the regulation of the immune system. An inflammatory response that must be reparative and self-limited loses its function and remains over time. In a chronic state of oxidative stress, there is a deficiency of antioxidants. This results in low levels of hormones, vitamins and trace elements, which are essential for the regulation of these systems.
Furthermore, low levels of antioxidants imply a diminished capacity for a regulated inflammatory responses are much more vulnerable to a cytokine storm that mainly attacks the lungs, since they present a vicious circle between the null or diminished response of the antioxidant systems and the loss of regulation of the inflammatory process. Therefore, these patients are at a disadvantage in counteracting the response of defense systems to infection from SAR-COV19. A plausible option may be to restore the levels of Vitamins A, B, C, D, E and of essential trace elements such as manganese, selenium, zinc, in the body, which are key to either preventing or reducing the severity of the response of the immune system to the disease caused by SAR-CoV2.
For the present review, we searched the specific sites of the Cochrane library database, PubMed and Medscape. The inclusion criteria were documents written in English or Spanish, published during the last 10 years.

Keywords: SARS-CoV2 virus, oxidative stress, dysregulation of the immune response, pollution

Article Details

How to Cite
RIVAS-ARANCIBIA, Selva et al. Oxidative Stress, Antioxidant Defenses, COVID-19 and Pollution. Medical Research Archives, [S.l.], v. 8, n. 10, oct. 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2254>. Date accessed: 21 dec. 2024. doi: https://doi.org/10.18103/mra.v8i10.2254.
Section
Review Articles

References

1. Delgado-Roche L, Mesta F. Oxidative Stress as Key Player in Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) Infection. Arch Med Res. 2020;51(5):384-387. doi:10.1016/j.arcmed.2020.04.019
2. Nasi A, McArdle S, Gaudernack G, et al. Reactive oxygen species as an initiator of toxic innate immune responses in retort to SARS-CoV-2 in an ageing population, consider N-acetylcysteine as early therapeutic intervention. Toxicol Rep. 2020;7:768-771. Published 2020 Jun 18. doi:10.1016/j.toxrep.2020.06.003
3. Schönrich G, Raftery MJ, Samstag Y. Devilishly radical NETwork in COVID-19: Oxidative stress, neutrophil extracellular traps (NETs), and T cell suppression. Adv Biol Regul. 2020;77:100741. doi:10.1016/j.jbior.2020.100741
4. Khomich OA, Kochetkov SN, Bartosch B, Ivanov AV. Redox Biology of Respiratory Viral Infections. Viruses. 2018;10(8):392. Published 2018 Jul 26. doi:10.3390/v10080392.
5. Thomas DC. The phagocyte respiratory burst: Historical perspectives and recent advances. Immunol Lett. 2017;192:88-96. doi:10.1016/j.imlet.2017.08.016
6. Baqi, H. M. Farag, A. H. El Bilbeisi, R. Askandar, and A. El Afifi, Oxidative Stress and Its Association with COVID-19: A Narrative Review, Kurdistan Journal of Applied Research, 2020;5(3):97-105, doi: http://doi.org/10.24017/kjar
7. Groß S, Jahn C, Cushman S, Bär C, Thum T. SARS-CoV-2 receptor ACE2-dependent implications on the cardiovascular system: From basic science to clinical implications. J Mol Cell Cardiol. 2020;144:47-53. doi:10.1016/j.yjmcc.2020.04.031
8. Verdecchia P, Cavallini C, Spanevello A, Angeli F. The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. Eur J Intern Med, 2020;76:14-20,
doi: http://10.1016/j.ejim.2020.04.037
9. Rabelo LA, Alenina N, Bader M. ACE2-angiotensin-(1-7)-Mas axis and oxidative stress in cardiovascular disease. Hypertens Res. 2011;34(2):154-160. doi:10.1038/hr.2010.235
10. Di Bona D, Cippitelli M, Fionda C, et al. Oxidative stress inhibits IFN-alpha-induced antiviral gene expression by blocking the JAK-STAT pathway. J Hepatol. 2006;45(2):271-279. doi:10.1016/j.jhep.2006.01.037
11. Olagnier DP, Farahani E, Thyrsted J, et al. Identification of SARS-CoV2-mediated suppression of NRF2 signaling reveals a potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Virology. 2020;1:1-26.doi:10.21203/rs.3.rs-31855/v1
12. Polonikov A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients. ACS Infect Dis. 2020;6(7):1558-1562. doi:10.1021/acsinfecdis.0c00288
13. Ntyonga-Pono MP. COVID-19 infection and oxidative stress: an under-explored approach for prevention and treatment?. Pan Afr Med J. 2020;35(Suppl 2):12. Published 2020 Apr 29. doi:10.11604/pamj.2020.35.2.22877
14. Lugrin J, Rosenblatt-Velin N, Parapanov R, Liaudet L. The role of oxidative stress during inflammatory processes. Biol Chem. 2014;395(2):203-230. doi:10.1515/hsz-2013-0241
15. Bello-Chavolla OY, Bahena-López JP, Antonio-Villa NE, et al. Predicting Mortality Due to SARS-CoV-2: A Mechanistic Score Relating Obesity and Diabetes to COVID-19 Outcomes in Mexico. J Clin Endocrinol Metab. 2020;105(8):dgaa346. doi:10.1210/clinem/dgaa346
16. Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100:1-19. doi:10.1016/j.vph.2017.05.005
17. Persson K, Sauma L, Säfholm A, Xu L, Li W, Yuan XM. LDL and UV-oxidized LDL induce upregulation of iNOS and NO in unstimulated J774 macrophages and HUVEC. APMIS. 2009;117(1):1-9. doi:10.1111/j.1600-0463.2008.00001.x
18. Engin A. Endothelial Dysfunction in Obesity. Adv Exp Med Biol. 2017;960:345-379. doi:10.1007/978-3-319-48382-5_15
19. Rahal A, Kumar A, Singh V, et al. Oxidative stress, prooxidants, and antioxidants: the interplay. Biomed Res Int. 2014;2014:761264. doi:10.1155/2014/761264
20. The RECOVERY Collaborative Group. Dexamethasone in hospitalized patients with Covid-19 — preliminary report. N Engl J Med. 2020; NEJMoa2021436. doi:10.1056/NEJMoa2021436.
21. Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI Jr. Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem J. 2016;473(24):4527-4550. doi:10.1042/BCJ20160503C
22. Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016;148:183-193. doi:10.1016/j.lfs.2016.02.002
23. Singh V. Can Vitamins, as Epigenetic Modifiers, Enhance Immunity in COVID-19 Patients with Non-communicable Disease?. Curr Nutr Rep. 2020;9(3):202-209. doi:10.1007/s13668-020-00330-4
24. Ortac Ersoy E, Tanriover MD, Ocal S, Ozisik L, Inkaya C, Topeli A. Severe measles pneumonia in adults with respiratory failure: role of ribavirin and high-dose vitamin A. Clin Respir J. 2016;10(5):673-675. doi:10.1111/crj.12269
25. Kiedrowski MR, Bomberger JM. Viral-Bacterial Co-infections in the Cystic Fibrosis Respiratory Tract. Front Immunol. 2018;9:3067. Published 2018 Dec 20. doi:10.3389/fimmu.2018.03067
26. Irlam JH, Siegfried N, Visser ME, Rollins NC. Micronutrient supplementation for children with HIV infection. Cochrane Database Syst Rev. 2013;(10):CD010666. Published 2013 Oct 11. doi:10.1002/14651858.CD010666
27. Soye KJ, Trottier C, Richardson CD, Ward BJ, Miller WH Jr. RIG-I is required for the inhibition of measles virus by retinoids. PLoS One. 2011;6(7):e22323. doi:10.1371/journal.pone.0022323
28. Wendland K, Niss K, Kotarsky K, et al. Retinoic Acid Signaling in Thymic Epithelial Cells Regulates Thymopoiesis. J Immunol. 2018;201(2):524-532. doi:10.4049/jimmunol.1800418
29. Sarang Z, Garabuczi É, Joós G, et al. Macrophages engulfing apoptotic thymocytes produce retinoids to promote selection, differentiation, removal and replacement of double positive thymocytes. Immunobiology. 2013;218(11):1354-1360. doi:10.1016/j.imbio.2013.06.009
30. Polcz ME, Barbul A. The Role of Vitamin A in Wound Healing. Nutr Clin Pract. 2019;34(5):695-700. doi:10.1002/ncp.10376
31. Surman SL, Penkert RR, Sealy RE, et al. Consequences of Vitamin A Deficiency: Immunoglobulin Dysregulation, Squamous Cell Metaplasia, Infectious Disease, and Death. Int J Mol Sci. 2020;21(15):5570. Published 2020 Aug 4. doi:10.3390/ijms21155570
32. Ryz NR, Lochner A, Bhullar K, et al. Dietary vitamin D3 deficiency alters intestinal mucosal defense and increases susceptibility to Citrobacter rodentium-induced colitis. Am J Physiol Gastrointest Liver Physiol. 2015;309(9):G730-G742. doi:10.1152/ajpgi.00006.2015
33. Qrafli M, El Kari K, Aguenaou H, Bourkadi JE, Sadki K, El Mzibri M. Low plasma vitamin A concentration is associated with tuberculosis in Moroccan population: a preliminary case control study. BMC Res Notes. 2017;10(1):421. Published 2017 Aug 23. doi:10.1186/s13104-017-2737-z
34. Awasthi S, Peto R, Read S, et al. Vitamin A supplementation every 6 months with retinol in 1 million pre-school children in north India: DEVTA, a cluster-randomised trial. Lancet. 2013;381(9876):1469-1477. doi:10.1016/S0140-6736(12)62125-4
35. Kyme P, Thoennissen NH, Tseng CW, et al. C/EBPε mediates nicotinamide-enhanced clearance of Staphylococcus aureus in mice [published correction appears in J Clin Invest. 2012 Nov;122(11):4301]. J Clin Invest. 2012;122(9):3316-3329. doi:10.1172/JCI62070
36. Jones HD, Yoo J, Crother TR, et al. Nicotinamide exacerbates hypoxemia in ventilator-induced lung injury independent of neutrophil infiltration [published correction appears in PLoS One. 2015;10(5):e0128735]. PLoS One. 2015;10(4):e0123460. Published 2015 Apr 13. doi:10.1371/journal.pone.0123460
37. Maggini S, Pierre A, Calder PC. Immune Function and Micronutrient Requirements Change over the Life Course. Nutrients. 2018;10(10):1531. Published 2018 Oct 17. doi:10.3390/nu10101531
38. Hiedra R, Lo KB, Elbashabsheh M, et al. The use of IV vitamin C for patients with COVID-19: a case series [published online ahead of print, 2020 Aug 1]. Expert Rev Anti Infect Ther. 2020;1-3. doi:10.1080/14787210.2020.1794819
39. Hemilä H, Chalker E. Vitamin C Can Shorten the Length of Stay in the ICU: A Meta-Analysis. Nutrients. 2019;11(4):708. Published 2019 Mar 27. doi:10.3390/nu11040708
40. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10(4):482-496. doi:10.1016/j.coph.2010.04.001
41. Sassi F, Tamone C, D'Amelio P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients. 2018;10(11):1656. Published 2018 Nov 3. doi:10.3390/nu10111656.
42. Kongsbak Martin, Levring Trine, Geisler Carsten, von Essen Marina. The Vitamin D Receptor and T Cell Function. Frontiers in Immunology. 2013; 4: 148.
DOI: https10.3389/fimmu.2013.00148
43. Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev. 2016;96(1):365-408. doi:10.1152/physrev.00014.2015
44. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the 'Cytokine Storm' in COVID-19. J Infect. 2020;80(6):607-613. doi:10.1016/j.jinf.2020.03.037
45. Yonggang Zhou, Binqing Fu, Xiaohu Zheng, Dongsheng Wang, Changcheng Zhao, Yingjie Qi, Rui Sun, Zhigang Tian, Xiaoling Xu, Haiming Wei, Pathogenic T-cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients, National Science Review, 2020;7(6):998–1002. https://doi.org/10.1093/nsr/nwaa041
46. Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res. 2020;32(7):1195-1198. doi:10.1007/s40520-020-01570-8
47. Gynther P, Toropainen S, Matilainen JM, Seuter S, Carlberg C, Väisänen S. Mechanism of 1α,25-dihydroxyvitamin D(3)-dependent repression of interleukin-12B. Biochim Biophys Acta. 2011;1813(5):810-818. doi:10.1016/j.bbamcr.2011.01.037
48. White JH. Vitamin D metabolism and signaling in the immune system. Rev Endocr Metab Disord. 2012;13(1):21-29. doi:10.1007/s11154-011-9195-z
49. Wan F, Lenardo MJ. The nuclear signaling of NF-kappaB: current knowledge, new insights, and future perspectives. Cell Res. 2010;20(1):24-33. doi:10.1038/cr.2009.137
50. Sun HQ, Yan D, Wang QN, et al. 1,25-Dihydroxyvitamin D3 attenuates disease severity and induces synoviocyte apoptosis in a concentration-dependent manner in rats with adjuvant-induced arthritis by inactivating the NF-κB signaling pathway. J Bone Miner Metab. 2019;37(3):430-440. doi:10.1007/s00774-018-0944-x
51. Galmés S, Serra F, Palou A. Vitamin E Metabolic Effects and Genetic Variants: A Challenge for Precision Nutrition in Obesity and Associated Disturbances. Nutrients. 2018;10(12):1919. Published 2018 Dec 4. doi:10.3390/nu10121919
52. Nonnecke BJ, McGill JL, Ridpath JF, Sacco RE, Lippolis JD, Reinhardt TA. Acute phase response elicited by experimental bovine diarrhea virus (BVDV) infection is associated with decreased vitamin D and E status of vitamin-replete preruminant calves. J Dairy Sci. 2014;97(9):5566-5579. doi:10.3168/jds.2014-8293
53. Li L, Yang X. The Essential Element Manganese, Oxidative Stress, and Metabolic Diseases: Links and Interactions. Oxid Med Cell Longev. 2018;2018:7580707. Published 2018 Apr 5. doi:10.1155/2018/7580707
54. Chen P, Chakraborty S, Mukhopadhyay S, et al. Manganese homeostasis in the nervous system. J Neurochem. 2015;134(4):601-610. doi:10.1111/jnc.13170
55. Guillin OM, Vindry C, Ohlmann T, Chavatte L. Selenium, Selenoproteins and Viral Infection. Nutrients. 2019;11(9):2101. Published 2019 Sep 4. doi:10.3390/nu11092101.
56. Harthill M. Review: micronutrient selenium deficiency influences evolution of some viral infectious diseases. Biol Trace Elem Res. 2011;143(3):1325-1336. doi:10.1007/s12011-011-8977-1.
57. Skalny AV, Rink L, Ajsuvakova OP, et al. Zinc and respiratory tract infections: Perspectives for COVID 19 (Review). Int J Mol Med. 2020;46(1):17-26. doi:10.3892/ijmm.2020.4575.
58. Livingstone C. Zinc: physiology, deficiency, and parenteral nutrition. Nutr Clin Pract. 2015;30(3):371-382. doi:10.1177/0884533615570376.
59. Hara T, Takeda TA, Takagishi T, Fukue K, Kambe T, Fukada T. Physiological roles of zinc transporters: molecular and genetic importance in zinc homeostasis. J Physiol Sci. 2017;67(2):283-301. doi:10.1007/s12576-017-0521-4
60. Jarosz M, Olbert M, Wyszogrodzka G, Młyniec K, Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25(1):11-24. doi:10.1007/s10787-017-0309-4.
61. Olechnowicz J, Tinkov A, Skalny A, Suliburska J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J Physiol Sci. 2018;68(1):19-31. doi:10.1007/s12576-017-0571-7.
62. Maywald M, Wessels I, Rink L. Zinc Signals and Immunity. Int J Mol Sci. 2017;18(10):2222. Published 2017 Oct 24. doi:10.3390/ijms18102222.
63. te Velthuis AJ, van den Worm SH, Sims AC, Baric RS, Snijder EJ, van Hemert MJ. Zn(2+) inhibits coronavirus and arterivirus RNA polymerase activity in vitro and zinc ionophores block the replication of these viruses in cell culture. PLoS Pathog. 2010;6(11):e1001176. Published 2010 Nov 4. doi:10.1371/journal.ppat.1001176.
64. Skalny AV, Rink L, Ajsuvakova OP, et al. Zinc and respiratory tract infections: Perspectives for COVID 19 (Review). Int J Mol Med. 2020;46(1):17-26. doi:10.3892/ijmm.2020.4575
65. Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277-285. doi:10.1016/j.autrev.2014.11.008
66. Pittet LA, Hall-Stoodley L, Rutkowski MR, Harmsen AG. Influenza virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol. 2010;42(4):450-460. doi:10.1165/rcmb.2007-0417OC.
67. Costarelli L, Muti E, Malavolta M, et al. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J Nutr Biochem. 2010;21(5):432-437. doi:10.1016/j.jnutbio.2009.02.001.
68. Mocchegiani E, Romeo J, Malavolta M, et al. Zinc: dietary intake and impact of supplementation on immune function in elderly. Age (Dordr). 2013;35(3):839-860. doi:10.1007/s11357-011-9377-3.
69. Xue J, Moyer A, Peng B, Wu J, Hannafon BN, Ding WQ. Chloroquine is a zinc ionophore. PLoS One. 2014;9(10):e109180. Published 2014 Oct 1. doi:10.1371/journal.pone.0109180.
70. Shittu MO, Afolami OI. Improving the efficacy of Chloroquine and Hydroxychloroquine against SARS-CoV-2 may require Zinc additives - A better synergy for future COVID-19 clinical trials. Infez Med. 2020;28(2):192-197.
71. Chabosseau P, Rutter GA. Zinc and diabetes. Arch Biochem Biophys. 2016;611:79-85. doi:10.1016/j.abb.2016.05.022.
72. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75-87. doi:10.1016/j.freeradbiomed.2013.07.036.
73. Neves AL, Mohammedi K, Emery N, et al. Allelic variations in superoxide dismutase-1 (SOD1) gene and renal and cardiovascular morbidity and mortality in type 2 diabetic subjects. Mol Genet Metab. 2012;106(3):359-365. doi:10.1016/j.ymgme.2012.04.023.
74. Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci U S A. 2018;115(23):5839-5848. doi:10.1073/pnas.180493211.
75. Subramanian P, Mitroulis I, Hajishengallis G, Chavakis T. Regulation of tissue infiltration by neutrophils: role of integrin α3β1 and other factors. Curr Opin Hematol. 2016;23(1):36-43. doi:10.1097/MOH.0000000000000198.
76. Wang Y, Yu C, Pan Y, et al. A novel compound C12 inhibits inflammatory cytokine production and protects from inflammatory injury in vivo. PLoS One. 2011;6(9):e24377. doi:10.1371/journal.pone.0024377.
77. Batinić-Haberle I, Rebouças JS, Spasojević I. Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal. 2010;13(6):877-918. doi:10.1089/ars.2009.2876.
78. Yamakura F, Kawasaki H. Post-translational modifications of superoxide dismutase. Biochim Biophys Acta. 2010;1804(2):318-325. doi:10.1016/j.bbapap.2009.10.010.
79. Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75-87. doi:10.1016/j.freeradbiomed.2013.07.036.
80. Ito W, Kobayashi N, Takeda M, et al. Thioredoxin in allergic inflammation. Int Arch Allergy Immunol. 2011;155 Suppl 1:142-146. doi:10.1159/000327501.
81. Gould RL, Pazdro R. Impact of Supplementary Amino Acids, Micronutrients, and Overall Diet on Glutathione Homeostasis. Nutrients. 2019;11(5):1056. Published 2019 May 11. doi:10.3390/nu11051056.
82. Min YN, Niu ZY, Sun TT, et al. Vitamin E and vitamin C supplementation improves antioxidant status and immune function in oxidative-stressed breeder roosters by up-regulating expression of GSH-Px gene. Poult Sci. 2018;97(4):1238-1244. doi:10.3382/ps/pex417.
83. Sinha R, Sinha I, Calcagnotto A, et al. Oral supplementation with liposomal glutathione elevates body stores of glutathione and markers of immune function. Eur J Clin Nutr. 2018;72(1):105-111. doi:10.1038/ejcn.2017.132.
84. Marushchak M, Maksiv K, Krynytska I, Stechyshyn I. Glutathione antioxidant system of lymphocytes in the blood of patients in a setting of concomitant chronic obstructive pulmonary disease and arterial hypertension. Pol Merkur Lekarski. 2019;47(281):177-182.
85. Rivas-Arancibia S, Guevara-Guzmán R, López-Vidal Y, et al. Oxidative stress caused by ozone exposure induces loss of brain repair in the hippocampus of adult rats. Toxicol Sci. 2010;113(1):187-197. doi:10.1093/toxsci/kfp252.
86. Lu J, Gu J, Li K, et al. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020. Emerg Infect Dis. 2020;26(7):1628-1631. doi:10.3201/eid2607.200764
87. Wang P, Chen K, Zhu S, Wang P, Zhang H. Severe air pollution events not avoided by reduced anthropogenic activities during COVID-19 outbreak. Resour Conserv Recycl. 2020;158:104814. doi:10.1016/j.resconrec.2020.104814.
88. Pyankov OV, Pyankova OG, Agranovski IE. Inactivation of airborne influenza virus in the ambient air. Journal of Aerosol Science. 2012;53:21-28. doi:10.1016/j.jaerosci.2012.05.011.
89. Contini D, Costabile F, Does Air Pollution Influence COVID-19 Outbreaks? Atmosphere. 2020;11(377):377. doi:10.3390/atmos11040377.
90. Ou X, Liu Y, Lei X, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. Published 2020 Mar 27. doi:10.1038/s41467-020-15562-9.
91. Zhu Y, Xie J, Huang F, Cao L. Association between short-term exposure to air pollution and COVID-19 infection: Evidence from China. Sci Total Environ. 2020;727:138704. doi:10.1016/j.scitotenv.2020.138704.
92. Tellier R, Li Y, Cowling BJ, Tang JW. Recognition of aerosol transmission of infectious agents: a commentary. BMC Infect Dis. 2019;19(1):101. Published 2019 Jan 31. doi:10.1186/s12879-019-3707-y.
93. Asadi S, Bouvier N, Wexler AS, Ristenpart WD. The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles?. Aerosol Sci Technol. 2020;0(0):1-4. Published 2020 Apr 3. doi:10.1080/02786826.2020.1749229.