A New Model for Predicting Infectious Disease Outbreaks

Main Article Content

Peter Demitry,, MD, MPH Darren McKnight, PhD Erin Dale, MS Elizabeth Bartlett, BS


This project integrated tools and hybrid methodologies historically used for early warning, intelligence, counter space, public health, informatics, and medical surveillance applications. A multidiscipline team assembled and explored non-medical prediction and analytical techniques that successfully predict critical events for low probability but high-regret national and global scenarios. The team then created novel approaches needed to fill nuanced and unique gaps for the infectious disease prediction challenge. The team adopted and applied those proven procedures to determine which would be efficacious in foretelling infectious disease outbreaks around the world.  One outcome of that effort was a successful two-year development and validation project designated ‘RAID’ (Risk Awareness Framework for Infectious Diseases), which focused on malaria prediction. The project’s objective was to maximize the warning (prediction) window of impending malaria epidemic outbreaks with sufficient time to allow meaningful preventive intervention before widespread human infection.  It is generally recognized the more protracted the prediction window extends before an event, the more time available for health authorities to muster and deploy resources, which lessen morbidity, mortality, and harmful economic effects.  Also, the value of early warning for an imminent epidemic must have mitigation options, or the warning window would have no beneficial impact on health outcomes.  Finally, early notice is preferable over surprise epidemics, as unexpected waves of patients seeking acute care can easily overwhelm most local medical systems, as history repeatedly teaches.  This cliché keeps repeating, with recurring Ebola epidemics and the recent COVID-19 pandemic as prominent exemplars.  Predictive lead times need to be adequate for an intervention to be relevant.  RAID’s focus on malaria prediction met these criteria from a relevant clinical and humanitarian perspective.

Subsequent papers will address successful external generalization of these methods in predicting other similar infectious diseases.  The model presented in this manuscript supports the conclusion that an additional two weeks advance notice could be available to public health authorities utilizing these techniques.  This foreknowledge would allow the deployment of limited health resources into areas where they would do the most good and just in time.  The geographical specificity was examined down to 5 km x 5 km grid squares overlaid anywhere in the world.  Most of the model’s input data were derived from remote sensing satellite sources that could combine with historical WHO (World Health Organization) or nation-reported existential pathogen loads to improve model accuracy; however, such data harmonization is not required.  If ground sensors were integrated into the modeling, the confidence of the risk of infection would logically improve.  The model provides a successful global risk assessment via commercially available remote space sensors, even without ground sensing.

RAID provides a necessary and useful preliminary means to predictive situational awareness.  This improved predictive awareness is sufficiently granular to identify last chance windows for public health interventions globally.  This need will become even more pronounced as infectious diseases evolve biologically and migrate geographically at ever-increasing rates.

Article Details

How to Cite
DEMITRY,, Peter et al. A New Model for Predicting Infectious Disease Outbreaks. Medical Research Archives, [S.l.], v. 8, n. 10, oct. 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2255>. Date accessed: 27 nov. 2020. doi: https://doi.org/10.18103/mra.v8i10.2255.
Research Articles


1. Abate A, Degarege A, Erko B. Community knowledge, attitude and practice about malaria in a low endemic setting of Shewa Robit Town, northeastern Ethiopia. BMC Public Health. 2013;13(1):312. doi:10.1186/1471-2458-13-312
2. Abeku T a., De Vlas SJ, Borsboom G, et al. Forecasting malaria incidence from historical morbidity patterns in epidemic-prone areas of Ethiopia: A simple seasonal adjustment method performs best. Trop Med Int Heal. 2002;7(10):851-857. doi:10.1046/j.1365-3156.2002.00924.x
3. Adimi F, Soebiyanto RP, Safi N, Kiang R. Towards malaria risk prediction in Afghanistan using remote sensing. Malar J. 2010;9:125. doi:10.1186/1475-2875-9-125
4. Al-Taiar A, Jaffar S, Assabri A, et al. Who develops severe malaria? Impact of access to healthcare, socio-economic and environmental factors on children in Yemen: A case-control study. Trop Med Int Heal. 2008;13(6):762-770. doi:10.1111/j.1365-3156.2008.02066.x
5. Andrick B, Clark B, Nygaard K, Logar a., Penaloza M, Welch R. Infectious disease and climate change: detecting contributingfactors and predicting future outbreaks. IGARSS’97 1997 IEEE Int Geosci Remote Sens Symp Proceedings Remote Sens - A Sci Vis Sustain Dev. 1997;4:1947-1949. doi:10.1109/IGARSS.1997.609159
6. Araújo MDS, Gil LHS, de Almeida e Silva A. Larval food quantity affects development time, survival and adult biological traits that influence the vectorial capacity of Anopheles darlingi under laboratory conditions. Malar J. 2012;11:261. doi:10.1186/1475-2875-11-261
7. Asih PB, Rozi IE, Herdiana H, et al. The baseline distribution of malaria in the initial phase of elimination in Sabang Municipality, Aceh Province, Indonesia. Malar J. 2012;11:291. doi:10.1186/1475-2875-11-291
8. Ayele DG, Zewotir TT, Mwambi HG. Prevalence and risk factors of malaria in Ethiopia. Malar J. 2012;11:195. doi:10.1186/1475-2875-11-195
9. Badolo A, Traoré A, Jones CM, et al. Three years of insecticide resistance monitoring in Anopheles gambiae in Burkina Faso: resistance on the rise? Malar J. 2012;11:232. doi:10.1186/1475-2875-11-232
10. Baeza A, Bouma MJ, Dobson AP, Dhiman R, Srivastava HC, Pascual M. Climate forcing and desert malaria: the effect of irrigation. Malar J. 2011;10:190. doi:10.1186/1475-2875-10-190
11. Baliraine FN, Afrane Y a, Amenya D a, et al. A cohort study of Plasmodium falciparum infection dynamics in Western Kenya Highlands. BMC Infect Dis. 2010;10:283. doi:10.1186/1471-2334-10-283
12. Basurko C, Hanf M, Han-Sze R, et al. Influence of climate and river level on the incidence of malaria in Cacao, French Guiana. Malar J. 2011;10:26. doi:10.1186/1475-2875-10-26
13. Bayoh MN. Studies on the development and survival of Anopheles gambiae sensustricto at various temperatures and relative humidities. Published online 2001:134. http://etheses.dur.ac.uk/4952
14. Beck LR, Lobitz BM, Wood BL. New Sensors and New Opportunities. Emerg Infect Dis. 2000;6(3):217-226.
15. Beier JC, Killeen GF, Githure JI. Short report: Entomologic inoculation rates and Plasmodium falciparum malaria prevalence in Africa. Am J Trop Med Hyg. 1999;61(1):109-113.
16. Bekele D, Belyhun Y, Petros B, Deressa W. Assessment of the effect of insecticide-treated nets and indoor residual spraying for malaria control in three rural kebeles of Adami Tulu District, South Central Ethiopia. Malar J. 2012;11:127. doi:10.1186/1475-2875-11-127
17. Berberian G, Rosanova MT. [Impact of climate change on infectious diseases]. Arch Argent Pediatr. 2012;110(3):39-45. doi:10.1590/S0325-00752012000100009
18. Berg J, Breederveld D, Roukens AH, et al. Knowledge, attitudes, and practices toward malaria risk and prevention among frequent business travelers of a major oil and gas company. J Travel Med. 2011;18(6):395-401. doi:10.1111/j.1708-8305.2011.00555.x
19. Blanford JI, Blanford S, Crane RG, et al. Implications of temperature variation for malaria parasite development across Africa. Sci Rep. 2013;3:1300. doi:10.1038/srep01300
20. Bomblies A, Duchemin JB, Eltahir E a B. Hydrology of malaria: Model development and application to a Sahelian village. Water Resour Res. 2008;44:1-26. doi:10.1029/2008WR006917
21. Booman M, Sharp BL, Martin CL, Manjate B, La Grange JJ, Durrheim DN. Enhancing malaria control using a computerised management system in southern Africa. Malar J. 2003;2:13. doi:10.1186/1475-2875-2-13
22. Breeveld FJ, Vreden SG, Grobusch MP. History of malaria research and its contribution to the malaria control success in Suriname: a review. Malar J. 2012;11:95. doi:10.1186/1475-2875-11-95
23. Briët OJT, Galappaththy GNL, Amerasinghe PH, Konradsen F. Malaria in Sri Lanka: one year post-tsunami. Malar J. 2006;5:42. doi:10.1186/1475-2875-5-42
24. Briët OJT, Galappaththy GNL, Konradsen F, Amerasinghe PH, Amerasinghe FP. Maps of the Sri Lanka malaria situation preceding the tsunami and key aspects to be considered in the emergency phase and beyond. Malar J. 2005;4:8. doi:10.1186/1475-2875-4-8
25. Ceccato P, Vancutsem C, Klaver R, Rowland J, Connor SJ. A vectorial capacity product to monitor changing malaria transmission potential in epidemic regions of Africa. J Trop Med. 2012;2012. doi:10.1155/2012/595948
26. Chen H, Githeko AK, Zhou G, Githure JI, Yan G. New records of Anopheles arabiensis breeding on the Mount Kenya highlands indicate indigenous malaria transmission. Malar J. 2006;5:17. doi:10.1186/1475-2875-5-17
27. Chen S, Blanford JI, Fleischer SJ, Hutchinson M, Saunders MC, Thomas MB. Estimating west nile virus transmission period in pennsylvania using an optimized degree-day model. Vector Borne Zoonotic Dis. 2013;13(X):489-497. doi:10.1089/vbz.2012.1094
28. Chitnis N, Cushing JM, Hyman JM. Bifurcation Analysis of a Mathematical Model for Malaria Transmission. SIAM J Appl Math. 2006;67(1):24-45. doi:10.1137/050638941
29. Chitnis N, Hardy D, Gnaegi G, et al. Modeling the effects of vector control interventions in reducing malaria transmission, morbidity and mortality. 2010;9(Suppl 2):O7. doi:10.1186/1475-2875-9-S2-O7
30. Chiyaka C, Tatem a J, Cohen JM, et al. The Stability of Malaria Elimination. Science (80- ). 2013;339:909-910. doi:10.1126/science.1229509
31. Cho P-Y, Lee S-W, Ahn SK, et al. Evaluation of circumsporozoite protein of Plasmodium vivax to estimate its prevalence in the Republic of Korea: an observational study of incidence. Malar J. 2013;12:448. doi:10.1186/1475-2875-12-448
32. Cibulskis RE, Aregawi M, Williams R, Otten M, Dye C. Worldwide incidence of malaria in 2009: estimates, time trends, and a critique of methods. PLoS Med. 2011;8(12):e1001142. doi:10.1371/journal.pmed.1001142
33. Cohen JM, Ernst KC, Lindblade K a, Vulule JM, John CC, Wilson ML. Local topographic wetness indices predict household malaria risk better than land-use and land-cover in the western Kenya highlands. Malar J. 2010;9:328. doi:10.1186/1475-2875-9-328
34. Cohen JM, Smith DL, Cotter C, et al. Malaria resurgence: a systematic review and assessment of its causes. Malar J. 2012;11:122. doi:10.1186/1475-2875-11-122
35. Craig MH, Snow RW, le Sueur D. A climate-based distribution model of malaria transmission in sub-saharan Africa. Parsitol today. 1999;15(99):105-111.
36. Cuamba N, Mendis C. The role of Anopheles merus in malaria transmission in an area of southern Mozambique. J Vector Borne Dis. 2009;46(June):157-159.
37. Cui X, Parker DJ, Morse AP. The Drying Out of Soil Moisture following Rainfall in a Numerical Weather Prediction Model and Implications for Malaria Prediction in West Africa. Weather Forecast. 2009; 24:1549-1557. doi:10.1175/2009WAF2222240.1
38. Daash A, Srivastava A, Nagpal BN, Saxena R, Gupta SK. Geographical information system (GIS) in decision support to control malaria--a case study of Koraput district in Orissa, India. J Vector Borne Dis. 2009;46(1):72-74. http://www.ncbi.nlm.nih.gov/pubmed/19326711
39. Dambach P, Sié A, Lacaux JP, Vignolles C, Machault V, Sauerborn R. Using high spatial resolution remote sensing for risk mapping of malaria occurrence in the Nouna district, Burkina Faso. Glob Health Action. 2009; 2:1-8. doi:10.3402/gha.v2i0.2094
40. Das A, Anvikar AR, Cator LJ, et al. Malaria in India: the center for the study of complex malaria in India. Acta Trop. 2012;121(3):267-273. doi:10.1016/j.actatropica.2011.11.008
41. David N, Agricultural N, Zonal B, Sciences E. Characterisation of Anopheles Mosquitoes breeding habitats in lowland rice fields in Uganda. Nat Sci. 2011;9(6):44-58.
42. Davis RG, Kamanga A, Castillo-Salgado C, Chime N, Mharakurwa S, Shiff C. Early detection of malaria foci for targeted interventions in endemic southern Zambia. Malar J. 2011;10:260. doi:10.1186/1475-2875-10-260
43. Deressa W, Ali a., Enqusellassie F. Self-treatment of malaria in rural communities, Butajira, southern Ethiopia. Bull World Health Organ. 2003;81(01):261-268.
44. Derua Y a, Alifrangis M, Hosea KM, et al. Change in composition of the Anopheles gambiae complex and its possible implications for the transmission of malaria and lymphatic filariasis in north-eastern Tanzania. Malar J. 2012;11:188. doi:10.1186/1475-2875-11-188
45. Devi NP, Jauhari RK. Climatic variables and malaria incidence in Dehradun, Uttaranchal, India. J Vector Borne Dis. 2006;43(1):21-28. http://www.ncbi.nlm.nih.gov/pubmed/16642782
46. Dhiman S, Gopalakrishnan R, Goswami D, Rabha B, Baruah I, Singh L. Malaria incidence among paramilitary personnel in an endemic area of Tripura. Indian J Med Res. 2011;133(June):665-669.
47. Diabaté A, Yaro AS, Dao A, Diallo M, Huestis DL, Lehmann T. Spatial distribution and male mating success of Anopheles gambiae swarms. BMC Evol Biol. 2011;11:184. doi:10.1186/1471-2148-11-184
48. Dongus S, Nyika D, Kannady K, et al. Participatory mapping of target areas to enable operational larval source management to suppress malaria vector mosquitoes in Dar es Salaam, Tanzania. Int J Health Geogr. 2007;6:37. doi:10.1186/1476-072X-6-37
49. Donnelly MJ, McCall PJ, Lengeler C, et al. Malaria and urbanization in sub-Saharan Africa. Malar J. 2005;4:12. doi:10.1186/1475-2875-4-12
50. Donovan C, Siadat B, Frimpong J. Seasonal and Socio-Economic Variations in Clinical and Self-Reported Malaria in Accra , Ghana : Evidence From. 2012;46(2).
51. Eisele TP, Keating J, Swalm C, et al. Linking field-based ecological data with remotely sensed data using a geographic information system in two malaria endemic urban areas of Kenya. Malar J. 2003;2:44. doi:10.1186/1475-2875-2-44
52. Ernst KC, Lindblade K a., Koech D, et al. Environmental, socio-demographic and behavioural determinants of malaria risk in the western Kenyan highlands: A case-control study. Trop Med Int Heal. 2009;14(10):1258-1265. doi:10.1111/j.1365-3156.2009.02370.x
53. Fillinger U, Ndenga B, Githeko A, Lindsay SW. Integrated malaria vector control with microbial larvicides and insecticide-treated nets in western Kenya: A controlled trial. Bull World Health Organ. 2009;87(November 2008):655-665. doi:10.2471/BLT.08.055632
54. Fuller DO, Ahumada ML, Quiñones ML, Herrera S, Beier JC. Near-present and future distribution of Anopheles albimanus in Mesoamerica and the Caribbean Basin modeled with climate and topographic data. Int J Health Geogr. 2012;11:13. doi:10.1186/1476-072X-11-13
55. Fuller DO, Parenti MS, Hassan AN, Beier JC. Linking land cover and species distribution models to project potential ranges of malaria vectors: an example using Anopheles arabiensis in Sudan and Upper Egypt. Malar J. 2012;11:264. doi:10.1186/1475-2875-11-264
56. Gadiaga L, Machault V, Pagès F, et al. Conditions of malaria transmission in Dakar from 2007 to 2010. Malar J. 2011;10:312. doi:10.1186/1475-2875-10-312
57. Garamszegi LZ. Climate change increases the risk of malaria in birds. Glob Chang Biol. 2011;17:1751-1759. doi:10.1111/j.1365-2486.2010.02346.x
58. Garros C, Van Nguyen C, Trung HD, Van Bortel W, Coosemans M, Manguin S. Distribution of Anopheles in Vietnam, with particular attention to malaria vectors of the Anopheles minimus complex. Malar J. 2008;7:11. doi:10.1186/1475-2875-7-11
59. Gemperli A, Sogoba N, Fondjo E, et al. Mapping malaria transmission in West and Central Africa. Trop Med Int Heal. 2006;11(7):1032-1046. doi:10.1111/j.1365-3156.2006.01640.x
60. Gething PW, Elyazar IRF, Moyes CL, et al. A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010. PLoS Negl Trop Dis. 2012;6(9). doi:10.1371/journal.pntd.0001814
61. Gething PW, Patil AP, Smith DL, et al. A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J. 2011;10(1):378. doi:10.1186/1475-2875-10-378
62. Graves PM, Osgood DE, Thomson MC, et al. Effectiveness of malaria control during changing climate conditions in Eritrea, 1998-2003. Trop Med Int Heal. 2008;13(2):218-228. doi:10.1111/j.1365-3156.2007.01993.x
63. Grover-Kopec E, Kawano M, Klaver RW, Blumenthal B, Ceccato P, Connor SJ. An online operational rainfall-monitoring resource for epidemic malaria early warning systems in Africa. Malar J. 2005;4:6. doi:10.1186/1475-2875-4-6
64. Grover-Kopec EK, Blumenthal MB, Ceccato P, Dinku T, Omumbo J a, Connor SJ. Web-based climate information resources for malaria control in Africa. Malar J. 2006;5:38. doi:10.1186/1475-2875-5-38
65. Gu W, Novak RJ. Agent-based modelling of mosquito foraging behaviour for malaria control. Trans R Soc Trop Med Hyg. 2010;103(11):1-14. doi:10.1016/j.trstmh.2009.01.006.Agent-based
66. Guerra C a, Hay SI, Lucioparedes LS, et al. Assembling a global database of malaria parasite prevalence for the Malaria Atlas Project. Malar J. 2007;6(June 2009):17. doi:10.1186/1475-2875-6-17
67. Guerra C a, Snow RW, Hay SI. A global assessment of closed forests, deforestation and malaria risk. Ann Trop Med Parasitol. 2006;100(3):189-204. doi:10.1179/136485906X91512
68. Gurarie D, Karl S, Zimmerman P a., King CH, Pierre TG, Davis TME. Mathematical modeling of malaria infection with innate and adaptive immunity in individuals and agent-based communities. PLoS One. 2012;7(3):1-13. doi:10.1371/journal.pone.0034040
69. Guthmann JP, Llanos-Cuentas a, Palacios a, Hall a J. Environmental factors as determinants of malaria risk. A descriptive study on the northern coast of Peru. Trop Med Int Health. 2002;7(6):518-525. doi:10.1046/j.1365-3156.2002.00883.x
70. Haghdoost AA, Alexander N, Cox J. Modelling of malaria temporal variations in Iran. Trop Med Int Heal. 2008;13(12):1501-1508. doi:10.1111/j.1365-3156.2008.02166.x
71. Hamusse SD, Balcha TT, Belachew T. The impact of indoor residual spraying on malaria incidence in East Shoa Zone, Ethiopia. Glob Health Action. 2012;5:11619. doi:10.3402/gha.v5i0.11619
72. Hanafi-Bojd A, Vatandoost H, Oshaghi M a, et al. Spatial analysis and mapping of malaria risk in an endemic area, south of Iran: a GIS based decision making for planning of control. Acta Trop. 2012;122(1):132-137. doi:10.1016/j.actatropica.2012.01.003
73. Hanf M, Adenis A, Nacher M, Carme B. The role of El Niño Southern Oscillation (ENSO) on variations of monthly Plasmodium falciparum malaria cases at the Cayenne General Hospital, 1996-2009, French Guiana. Malar J. 2011;10:100. doi:10.1186/1475-2875-10-100
74. Haque U, Soares Magalhães RJ, Mitra D, et al. The role of age, ethnicity and environmental factors in modulating malaria risk in Rajasthali, Bangladesh. Malar J. 2011;10:367. doi:10.1186/1475-2875-10-367
75. Hathaway AK, Coldren R, Webby R. Title: The Impact of Altitude on Influenza Authors: Kyle Hathaway, Rodney Coldren, Richard Webby.
76. Hay SI, George DB, Moyes CL, Brownstein JS. Big Data Opportunities for Global Infectious Disease Surveillance. PLoS Med. 2013;10(4):2-5. doi:10.1371/journal.pmed.1001413
77. Hay SI, Omumbo J, Craig MH, Snow RW. Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Adv Parasitol. 2000;47:173-215. doi:http://dx.doi.org/10.1016/S0065-308X(00)47009-0
78. Hay SI, Rogers DJ, Toomer JF, Snow RW. Annual Plasmodium falciparum entomological inoculation rates (EIR) across Africa: literature survey, Internet access and review. Trans R Soc Trop Med Hyg. 2000;94:113-127. doi:10.1016/S0035-9203(00)90246-3
79. Herrel N, Amerasinghe FP, Ensink J, Mukhtar M, van der Hoek W, Konradsen F. Breeding of Anopheles mosquitoes in irrigated areas of South Punjab, Pakistan. Med Vet Entomol. 2001;15(3):236-248. http://www.ncbi.nlm.nih.gov/pubmed/11583440
80. Herrmann SM, Mohr KI. A continental-scale classification of rainfall seasonality regimes in Africa based on gridded precipitation and land surface temperature products. J Appl Meteorol Climatol. 2011;50:2504-2513. doi:10.1175/JAMC-D-11-024.1
81. Howard N, Shafi A, Jones C, Rowland M. Malaria control under the Taliban regime: insecticide-treated net purchasing, coverage, and usage among men and women in eastern Afghanistan. Malar J. 2010;9:7. doi:10.1186/1475-2875-9-7
82. Huang F, Zhou S, Zhang S, Wang H, Tang L. Temporal correlation analysis between malaria and meteorological factors in Motuo County, Tibet. Malar J. 2011;10:54. doi:10.1186/1475-2875-10-54
83. Iqbal J, Sher a., Hira PR, Al-Aniezi a. Drug-resistant Plasmodium falciparum infection in immigrants and non-immune travellers. Clin Microbiol Infect. 2002;8:734-738. doi:10.1046/j.1469-0691.2002.00451.x
84. Jacob BG, Muturi EJ, Mwangangi JM, et al. Remote and field level quantification of vegetation covariates for malaria mapping in three rice agro-village complexes in Central Kenya. Int J Health Geogr. 2007;6(Ivm):21. doi:10.1186/1476-072X-6-21
85. Jima D, Getachew A, Bilak H, et al. Malaria indicator survey 2007, Ethiopia: coverage and use of major malaria prevention and control interventions. Malar J. 2010;9:58. doi:10.1186/1475-2875-9-58
86. Jones AE, Morse AP. Application and validation of a seasonal ensemble prediction system using a dynamic malaria model. J Clim. 2010;23:4202-4215. doi:10.1175/2010JCLI3208.1
87. Jones AE, Wort UU, Morse AP, Hastings IM, Gagnon AS. Climate prediction of El Niño malaria epidemics in north-west Tanzania. Malar J. 2007;6:162. doi:10.1186/1475-2875-6-162
88. Jongwutiwes S, Buppan P, Kosuvin R, Seethamchai S. Plasmodium knowlesi Malaria in Humans and Macaques, Thailand. 2011;17(10):1799-1806.
89. Kampango a., Cuamba N, Charlwood JD. Does moonlight influence the biting behaviour of Anopheles funestus? Med Vet Entomol. 2011;25:240-246. doi:10.1111/j.1365-2915.2010.00917.x
90. Kamuliwo M, Chanda E, Haque U, et al. The changing burden of malaria and association with vector control interventions in Zambia using district-level surveillance data, 2006-2011. Malar J. 2013;12:437. doi:10.1186/1475-2875-12-437
91. Karunamoorthi K. Vector control: A cornerstone in the malaria elimination campaign. Clin Microbiol Infect. 2011;17:1608-1616. doi:10.1111/j.1469-0691.2011.03664.x
92. Khan W a, Sack D a, Ahmed S, et al. Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance. Malar J. 2011;10(1):124. doi:10.1186/1475-2875-10-124
93. Khan W a, Sack D a, Ahmed S, et al. Mapping hypoendemic, seasonal malaria in rural Bandarban, Bangladesh: a prospective surveillance. Malar J. 2011;10:124. doi:10.1186/1475-2875-10-124
94. Kibret S, Alemu Y, Boelee E, Tekie H, Alemu D, Petros B. The impact of a small-scale irrigation scheme on malaria transmission in Ziway area, Central Ethiopia. Trop Med Int Heal. 2010;15(1):41-50. doi:10.1111/j.1365-3156.2009.02423.x
95. Kim YM, Park JW, Cheong HK. Estimated effect of climatic variables on the transmission of plasmodium vivax malaria in the republic of Korea. Environ Health Perspect. 2012;120(9):1314-1319. doi:http://dx.doi.org/10.1289/ehp.1104577
96. Kirby MJ, Lindsay SW. Responses of adult mosquitoes of two sibling species, Anopheles arabiensis and A. gambiae s.s. (Diptera: Culicidae), to high temperatures. Bull Entomol Res. 2004;94:441-448. doi:10.1079/BER2004316
97. Korgaonkar NS, Kumar A, Yadav RS, Kabadi D, Dash AP. Mosquito biting activity on humans & detection of Plasmodium falciparum infection in Anopheles stephensi in Goa, India. Indian J Med Res. 2012;135(January):120-126. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3307172&tool=pmcentrez&rendertype=abstract
98. Kotwal RS, Wenzel RB, Sterling R a, Porter WD, Jordan NN, Petruccelli BP. An outbreak of malaria in US Army Rangers returning from Afghanistan. JAMA. 2005;293(2):212-216. doi:10.1001/jama.293.2.212
99. Lachish S, Knowles SCL, Alves R, Wood MJ, Sheldon BC. Fitness effects of endemic malaria infections in a wild bird population: The importance of ecological structure. J Anim Ecol. 2011;80:1196-1206. doi:10.1111/j.1365-2656.2011.01836.x
100. Lardeux FJ, Tejerina RH, Quispe V, Chavez TK. A physiological time analysis of the duration of the gonotrophic cycle of Anopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar J. 2008;7:141. doi:10.1186/1475-2875-7-141
101. Lautze J, McCartney M, Kirshen P, Olana D, Jayasinghe G, Spielman A. Effect of a large dam on malaria risk: The Koka reservoir in Ethiopia. Trop Med Int Heal. 2007;12(8):982-989. doi:10.1111/j.1365-3156.2007.01878.x
102. Le Menach a., Tatem a. J, Cohen JM, et al. Travel risk, malaria importation and malaria transmission in Zanzibar. Published online 2011:1-7. doi:10.1038/srep00093
103. Lee P-W, Liu C-T, do Rosario VE, de Sousa B, Rampao HS, Shaio M-F. Potential threat of malaria epidemics in a low transmission area, as exemplified by São Tomé and Príncipe. Malar J. 2010;9:264. doi:10.1186/1475-2875-9-264
104. Loiseau C, Harrigan RJ, Robert A, et al. Host and habitat specialization of avian malaria in Africa. Mol Ecol. 2012;21:431-441. doi:10.1111/j.1365-294X.2011.05341.x
105. Lunde TM, Bayoh MN, Lindtjørn B. How malaria models relate temperature to malaria transmission. Parasit Vectors. 2013;6:20. doi:10.1186/1756-3305-6-20
106. Machault V, Orlandi-Pradines E, Michel R, et al. Remote sensing and malaria risk for military personnel in Africa. J Travel Med. 2008;15(4):216-220. doi:10.1111/j.1708-8305.2008.00202.x
107. Machault V, Vignolles C, Pagès F, et al. Spatial heterogeneity and temporal evolution of malaria transmission risk in Dakar, Senegal, according to remotely sensed environmental data. Malar J. 2010;9:252. doi:10.1186/1475-2875-9-252
108. Malone JB, Poggi E, Igualada F-J, et al. Malaria environmental risk assessment in Eritrea. IGARSS 2003 2003 IEEE Int Geosci Remote Sens Symp Proc (IEEE Cat No03CH37477). 2003;2(C):1000-1003. doi:10.1109/IGARSS.2003.1293991
109. Manh C Do, Beebe NW, Van VNT, et al. Vectors and malaria transmission in deforested, rural communities in north-central Vietnam. Malar J. 2010;9:259. doi:10.1186/1475-2875-9-259
110. Manimunda SP, Sugunan AP, Sha WA, Singh SS, Shriram AN, Vijayachari P. Tsunami, post-tsunami malaria situation in Nancowry group of islands, Nicobar district, Andaman and Nicobar islands. Indian J Med Res. 2011;133(January):76-82.
111. McKelvie WR, Haghdoost AA, Raeisi A. Defining and detecting malaria epidemics in south-east Iran. Malar J. 2012;11:81. doi:10.1186/1475-2875-11-81
112. Mckenzie FE, Bossert WH. A TARGET FOR INTERVENTION IN PLASMODIUM FALCIPARUM INFECTIONS. Am J Trop Med Hyg. 1998;58(6):763-767.
113. Mendis K, Rietveld A, Warsame M, Bosman A, Greenwood B, Wernsdorfer WH. From malaria control to eradication: The WHO perspective. Trop Med Int Heal. 2009;14(7):802-809. doi:10.1111/j.1365-3156.2009.02287.x
114. Messina JP, Taylor SM, Meshnick SR, et al. Population, behavioural and environmental drivers of malaria prevalence in the Democratic Republic of Congo. Malar J. 2011;10:161. doi:10.1186/1475-2875-10-161
115. Midekisa A, Senay G, Henebry GM, Semuniguse P, Wimberly MC. Remote sensing-based time series models for malaria early warning in the highlands of Ethiopia. Malar J. 2012;11:165. doi:10.1186/1475-2875-11-165
116. Montgomery BC, Grieco J, Masuoka PM, et al. A remote sensing analysis of vector abundance and malaria riskassociated with selected villages in southern Belize, C.A. IGARSS ’98 Sens Manag Environ 1998 IEEE Int Geosci Remote Sensing Symp Proceedings (Cat No98CH36174). 1998;2:1053-1054. doi:10.1109/IGARSS.1998.699670
117. Montosi E, Manzoni S, Porporato A., Montanari A. An ecohydrological model of malaria outbreaks. Hydrol Earth Syst Sci. 2012;16:2759-2769. doi:10.5194/hess-16-2759-2012
118. Mordecai E a., Paaijmans KP, Johnson LR, et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett. 2013;16:22-30. doi:10.1111/ele.12015
119. Morrow MG, Johnson RN, Polanco J, Claborn DM. Mosquito vector abundance immediately before and after tropical storms Alma and Arthur, northern Belize, 2008. Rev Panam Salud Publica. 2010;28(May 2008):19-24. doi:10.1590/S1020-49892010000700003
120. Moss WJ, Hamapumbu H, Kobayashi T, et al. Use of remote sensing to identify spatial risk factors for malaria in a region of declining transmission: a cross-sectional and longitudinal community survey. Malar J. 2011;10(1):163. doi:10.1186/1475-2875-10-163
121. Moutinho PR, Gil LHS, Cruz RB, Ribolla PEM. Population dynamics, structure and behavior of Anopheles darlingi in a rural settlement in the Amazon rainforest of Acre, Brazil. Malar J. 2011;10(June):174. doi:10.1186/1475-2875-10-174
122. Myers MF, Rogers DJ, Cox J, Flahault a, Hay SI. Forecasting disease risk for increased epidemic preparedness in public health. Adv Parasitol. 2000;47:309-330.
123. Najera J a, Kouznetzsov RL, Delacollette C. Malaria epidemics, detection and control, forecasting and prevention. Malar epidemics Detect Control Forecast Prev. 1998;81:52. http://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=N&PAGE=fulltext&AN=19980808001&D=cagh2
124. Ndiath MO, Brengues C, Konate L, et al. Dynamics of transmission of Plasmodium falciparum by Anopheles arabiensis and the molecular forms M and S of Anopheles gambiae in Dielmo, Senegal. Malar J. 2008;7:136. doi:10.1186/1475-2875-7-136
125. Ndugwa RP, Ramroth H, Müller O, et al. Comparison of all-cause and malaria-specific mortality from two West African countries with different malaria transmission patterns. Malar J. 2008;7:15. doi:10.1186/1475-2875-7-15
126. Ngomane L, de Jager C. Changes in malaria morbidity and mortality in Mpumalanga Province, South Africa (2001- 2009): a retrospective study. Malar J. 2012;11:19. doi:10.1186/1475-2875-11-19
127. Njabo KY, Cornel J, Bonneaud C, et al. Nonspecific patterns of vector, host and avian malaria parasite associations in a central African rainforest. Mol Ecol. 2011;20:1049-1061. doi:10.1111/j.1365-294X.2010.04904.x
128. Olayemi IK. Survivorship Of Anopheles gambiae In Relation To Malaria Transmission In Ilorin, Nigeria. Online J Heal Allied Sci. 2008;7(3):3-7.
129. Ortega LI. Malaria Situation in South East Asia Region Regional Adviser , Malaria Milestones and trend of malaria in South East Asia , 1948-2011. :1-15.
130. Paaijmans KP, Cator LJ, Thomas MB. Temperature-Dependent Pre-Bloodmeal Period and Temperature-Driven Asynchrony between Parasite Development and Mosquito Biting Rate Reduce Malaria Transmission Intensity. PLoS One. 2013;8(1):1-7. doi:10.1371/journal.pone.0055777
131. Paaijmans KP, Read AF, Thomas MB. Understanding the link between malaria risk and climate. Proc Natl Acad Sci U S A. 2009;106:13844-13849. doi:10.1073/pnas.0903423106
132. Parham PE, Michael E. Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect. 2010;118(5):620-626. doi:10.1289/ehp.0901256
133. Patil AP, Okiro E a, Gething PW, et al. Defining the relationship between Plasmodium falciparum parasite rate and clinical disease: statistical models for disease burden estimation. Malar J. 2009;8:186. doi:10.1186/1475-2875-8-186
134. Pattanayak SK, Yasuoka J. Deforestation and malaria: Revisiting the human ecology perspective. People, Heal For A Glob Interdiscip Overv. 2005;(919):19pp. doi:10.4324/9781849771627
135. Peeters Grietens K, Xuan XN, Van Bortel W, et al. Low perception of malaria risk among the Raglai ethnic minority in south-central Vietnam: implications for forest malaria control. Malar J. 2010;9:23. doi:10.1186/1475-2875-9-23
136. Pindolia DK, Garcia J, Wesolowski A., et al. Human movement data for malaria control and elimination strategic planning. Published online 2012:1-17. doi:10.1186/1475-2875-11-205
137. Pindolia DK, Garcia AJ, Wesolowski A, et al. Human movement data for malaria control and elimination strategic planning. Malar J. 2012;11(1):205. doi:10.1186/1475-2875-11-205
138. Qi Q, Guerra C a, Moyes CL, et al. The effects of urbanization on global Plasmodium vivax malaria transmission. Malar J. 2012;11(1):403. doi:10.1186/1475-2875-11-403
139. Raiesi A, Nikpour F, Ansari-Moghaddam A, et al. Baseline results of the first malaria indicator survey in Iran at the health facility level. Malar J. 2011;10:319. doi:10.1186/1475-2875-10-319
140. Raso G, Schur N, Utzinger J, et al. Mapping malaria risk among children in Côte d’Ivoire using Bayesian geo-statistical models. Malar J. 2012;11:160. doi:10.1186/1475-2875-11-160
141. Reid HL, Haque U, Roy S, Islam N, Clements AC. Characterizing the spatial and temporal variation of malaria incidence in Bangladesh, 2007. Malar J. 2012;11(1):170. doi:10.1186/1475-2875-11-170
142. Reiner RC, Perkins TA, Barker CM, et al. A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010. J R Soc Interface. 2013;10:20120921. doi:10.1098/rsif.2012.0921
143. Resseguier N, Machault V, Ollivier L, et al. Determinants of compliance with malaria chemoprophylaxis among French soldiers during missions in inter-tropical Africa. Malar J. 2010;9:41. doi:10.1186/1475-2875-9-41
144. Rob Marchant Cassian Mumbi1 SB, Yamagata T. Review Paper The Indian Ocean dipole – the unsung driver of climatic variability in East Africa. Afr J Ecol. 2006;45:4–16.
145. Robert V, Trape JF, Rogier C. Malaria parasites: Elimination is not eradication. Clin Microbiol Infect. 2011;17:1597-1599. doi:10.1111/j.1469-0691.2011.03657.
146. Roca-Feltrer A, Carneiro I, Armstrong Schellenberg JRM. Estimates of the burden of malaria morbidity in Africa in children under the age of 5 years. Trop Med Int Health. 2008;13(6):771-783. doi:10.1111/j.1365-3156.2008.02076.
147. Russell TL, Lwetoijera DW, Maliti D, et al. Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J. 2010;9:187. doi:10.1186/1475-2875-9-187
148. Sainz-Elipe S, Latorre JM, Escosa R, et al. Malaria resurgence risk in southern Europe: climate assessment in an historically endemic area of rice fields at the Mediterranean shore of Spain. Malar J. 2010;9:221. doi:10.1186/1475-2875-9-221
149. Santelli AC, Ribeiro I, Daher A, et al. Effect of artesunate-mefloquine fixed-dose combination in malaria transmission in amazon basin communities. Malar J. 2012;11:286. doi:10.1186/1475-2875-11-286
150. Saxena R, Nagpal BN, Srivastava A, Gupta SK, Dash a P. Application of spatial technology in malaria research & control: some new insights. Indian J Med Res. 2009;130(August):125-132.
151. Shaman J, Lipsitch M. Fostering Advance in Interdisciplinary Climate Science Sackler Colloquium: The El Nino-Southern Oscillation (ENSO)-pandemic Influenza connection: Coincident or causal? Proc Natl Acad Sci. Published online 2012:1-3. doi:10.1073/pnas.1107485109
152. Sinka ME, Bangs MJ, Manguin S, et al. A global map of dominant malaria vectors. Parasit Vectors. 2012;5(1):69. doi:10.1186/1756-3305-5-69
153. Siri JG, Lindblade K a, Rosen DH, et al. Quantitative urban classification for malaria epidemiology in sub-Saharan Africa. Malar J. 2008;7:34. doi:10.1186/1475-2875-7-34
154. Smith DL, Battle KE, Hay SI, Barker CM, Scott TW, McKenzie FE. Ross, Macdonald, and a theory for the dynamics and control of mosquito-transmitted pathogens. PLoS Pathog. 2012;8(4). doi:10.1371/journal.ppat.1002588
155. Smith DL, Drakeley CJ, Chiyaka C, Hay SI. A quantitative analysis of transmission efficiency versus intensity for malaria. Nat Commun. 2010;1(8):108. doi:10.1038/ncomms1107
156. Smith DL, McKenzie FE, Snow RW, Hay SI. Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol. 2007;5(3):0531-0542. doi:10.1371/journal.pbio.0050042
157. Snow RW, Guerra CA, Noor AM, Myint HY, Simon I. Europe PMC Funders Group The global distribution of clinical episodes of Plasmodium falciparum malaria. 2011;434(7030):214-217. doi:10.1038/nature03342.The
158. Teklehaimanot HD, Lipsitch M, Teklehaimanot A, Schwartz J. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia I. Patterns of lagged weather effects reflect biological mechanisms. Malar J. 2004;3:41. doi:10.1186/1475-2875-3-41
159. Teklehaimanot HD, Schwartz J, Teklehaimanot A, Lipsitch M. Weather-based prediction of Plasmodium falciparum malaria in epidemic-prone regions of Ethiopia II. Weather-based prediction systems perform comparably to early detection systems in identifying times for interventions. Malar J. 2004;3:44. doi:10.1186/1475-2875-3-44
160. Thenkabail, P. S., Gamage, M. S. D. N. and Smakhtin VU. The Use of Remote Sensing Data for Drought Assessment and Monitoring in Southwest Asia.; 2004.
161. Tikar SN, Mendki MJ, Sharma a K, et al. Resistance status of the malaria vector mosquitoes, Anopheles stephensi and Anopheles subpictus towards adulticides and larvicides in arid and semi-arid areas of India. J Insect Sci. 2011;11(85):85. doi:10.1673/031.011.8501
162. Torr SJ, Della Torre A, Calzetta M, Constantini C, Vale GA. Towards a fuller understanding of mosquito behaviour: use of electrocuting grids to compare the odour- orientated responses of. Med Vet Entomol. Published online 2008:93-108.
163. van der Hoek W, Konradsen F, Perera D, Amerasinghe PH, Amerasinghe FP. Correlation between rainfall and malaria in the dry zone of Sri Lanka. Ann Trop Med Parasitol. 1997;91(8):945-949. http://www.ncbi.nlm.nih.gov/pubmed/9579215
164. Van Genderen PJJ, Van Thiel PP a M, Mulder PGH, Overbosch D. Trends in knowledge, attitudes, and practices of travel risk groups toward prevention of hepatitis A: Results from the Dutch Schiphol Airport Survey 2002 to 2009. J Travel Med. 2012;19:35-43. doi:10.1111/j.1708-8305.2011.00578.x
165. Vittor AY, Pan W, Gilman RH, et al. Linking deforestation to malaria in the Amazon: Characterization of the breeding habitat of the principal malaria vector, Anopheles darlingi. Am J Trop Med Hyg. 2009;81(August 2001):5-12.
166. Wallinga J, van Boven M, Lipsitch M. Optimizing infectious disease interventions during an emerging epidemic. Proc Natl Acad Sci U S A. 2010;107(2):923-928. doi:10.1073/pnas.0908491107
167. Whitman TJ, Coyne PE, Magill AJ, et al. An outbreak of Plasmodium falciparum malaria in U.S. marines deployed to Liberia. Am J Trop Med Hyg. 2010;83(2):258-265. doi:10.4269/ajtmh.2010.09-0774
168. Woyessa A, Deressa W, Ali A, Lindtjørn B. Prevalence of malaria infection in Butajira area, south-central Ethiopia. Malar J. 2012;11:84. doi:10.1186/1475-2875-11-84
169. Yé Y, Hoshen M, Kyobutungi C, Louis VR, Sauerborn R. Local scale prediction of plasmodium falciparum malaria transmission in an endemic region using temperature and rainfall. Glob Health Action. 2009;2:1-14. doi:10.3402/gha.v2i0.1923
170. Yé Y, Kyobutungi C, Louis VR, Sauerborn R. Micro-epidemiology of Plasmodium falciparum malaria: Is there any difference in transmission risk between neighbouring villages? Malar J. 2007;6:46. doi:10.1186/1475-2875-6-46
171. Zhang Y, Liu Q-Y, Luan R-S, et al. Spatial-temporal analysis of malaria and the effect of environmental factors on its incidence in Yongcheng, China, 2006–2010. BMC Public Health. 2012;12:544. doi:10.1186/1471-2458-12-544
172. Zhou G, Munga S, Minakawa N, Githeko AK, Yan G. Spatial relationship between adult malaria vector abundance and environmental factors in western Kenya highlands. Am J Trop Med Hyg. 2007;77(1):29-35.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.