Electrical response hysteresis of crayfish photoreceptors to light intensity. Dependence on circadian time.

Main Article Content

Carolina Barriga-Montoya Froylan Gomez-Lagunas

Abstract

We studied the light-triggered current of crayfish photoreceptors. We found that when a train of light flashes of either increasing or decreasing intensity is applied, the current waveform presents the non-linear behavior known as hysteresis. Additionally, we observed that the extent of this response depends on the circadian time at which the pulses are applied. We hypothesize that positive feedback loops of biochemical networks underlying light energy transduction are responsible of the observed behavior. It has been demonstrated that a dynamical system hysteresis provides a mechanism that enhances its robustness against random perturbations. Taking into account this characteristic we hypothesize that the electrical-response hysteresis of crayfish photoreceptors: 1) makes the visual system more stable to environmental noise, and hence 2) adds stability to circadian clock oscillations.

Article Details

How to Cite
BARRIGA-MONTOYA, Carolina; GOMEZ-LAGUNAS, Froylan. Electrical response hysteresis of crayfish photoreceptors to light intensity. Dependence on circadian time.. Medical Research Archives, [S.l.], v. 8, n. 11, dec. 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2280>. Date accessed: 28 nov. 2022. doi: https://doi.org/10.18103/mra.v8i11.2280.
Section
Research Articles

References

[1] Barriga-Montoya C, Gómez-Lagunas F, Fuentes-Pardo B. Effect of pigment dispersing hormone on the electrical activity of crayfish visual photoreceptors during the 24-h cycle. Comp. Biochem. Physiol. A. 2010;157:338–345.
doi: 10.1016/j.cbpa.2010.08.003
[2] Barriga-Montoya C, de la O-Martínez A, Fuentes-Pardo B, Gómez-Lagunas F. Desensitization and recovery of crayfish photoreceptors. Dependency on circadian time, and pigment-dispersing hormone. Comp. Biochem. Physiol. A. , 2017;203:297-303. doi: 10.1016/j.cbpa.2016.10.008.
[3] Barriga-Montoya C, de la O-Martínez A, Picones A, Hernández-Cruz A, Fuentes-Pardo B, Gómez-Lagunas F. Desensitization and recovery of crayfish photoreceptors upon delivery of a light stimulus. JoVE. 2019;153:e56258. doi: 10.3791/56258
[4] Hardie RC, Juusola M. Phototransduction in Drosophila. Curr Opin Neurobiol. 2015;34:37-45.
doi: 10.1016/j.conb.2015.01.008.
[5] Stern D B, Crandall KA. Phototransduction gene expression and evolution in cave and surface crayfishes. Integr Comp Biol. 2018;58(3):398-410.
doi: 10.1093/icb/icy029.
[6] Terakita A, Hariyama T, Tsukahara Y, Katsukura Y, Tashiro H. Interaction of GTP-binding protein Gq with photoactivated rhodopsin in the photoreceptor membranes of crayfish. FEBS Lett. 1993;330:197-200. doi: 10.1016/0014-5793(93)80272-v.
[7] Terakita A, Takahama H, Hariyama T, Suzuki T, Tsukahara Y. Light regulated localization of the beta-subunit of Gq-type G-protein in the crayfish photoreceptors. J Comp Physiol A. 1998;183:411-417.
doi: 10.1007/s003590050267.
[8] Terakita A, Takahama H, Tamotsu S, Suzuki T, Hariyama T, Tsukahara Y. Light-modulated subcellular localization of the alpha-subunit of GTP-binding protein Gq in crayfish photoreceptors. Vis Neurosci. 1993;13:539-547. doi: 10.1017/s095252380000821x.
[9] Pruett WA, Hester RL, Coleman TG. The apparent hysteresis in hormone-agonist relationships. J Theor Biol. 2012;296:1-5. doi: 10.1016/j.jtbi.2011.11.025
[10] Mitrophanov AY, Groisman EA. Positive feedback in cellular control systems. Bioessays. 2008;30(6):542-555.
doi: 10.1002/bies.20769.
[11] Hu J, Qin KR, Xiang C, Lee TH. Modeling of hysteresis in gene regulatory networks. Bull Math Biol. 2012;74(8):1727-1753. doi: 10.1007/s11538-012-9733-1
[12] Kim JR, Cho KH. The regulatory circuits for hysteretic switching in cellular signal transduction pathways. FEBS J. 2012;279(18):3329-3337.
doi: 10.1111/j.1742-4658.2012.08623.x
[13] Angeli D, Ferrell JE, Sontag ED. Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. PNAS. 2004;101(7):1822-1827. doi: 10.1073/pnas.0308265100.
[14] Maeda K, Kurata H. Long negative feedback loop enhances period tunability of biological oscillators. J Theor Biol. 2018;440: 21-31. doi: 10.1016/j.jtbi.2017.12.014.
[15] Van Harreveld A. A physiological solution for freshwater crustaceans. Proc Soc Exp Biol Med. 1936;34(4): 428-432.
doi: 10.3181/00379727-34-8647C
[16] Fuentes-Pardo B, Hernández-Falcón J, Noguerón I. Effect of external level of calcium upon the photoreceptor potential of crayfish along the twenty-four hour cycle. Comp Biochem Physiol A. 1983;78:723–727. doi: 10.1016/0300-9629(84)90623-6
[17] Juusola M, Song Z. How a fly photoreceptor samples light information in time. J Physiol. 2017;595(16):5427-5437.
doi: 10.1113/JP273645.
[18] Miller CS, Glantz RM. Visual adaptation modulates a potassium conductance in retinular cells of the crayfish. Vis Neurosci. , 2000;17:353-368.
doi: 10.1017/s0952523800173043.
[19] Helfrich-Förster C. Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2020;206(2):259-272. doi: 10.1007/s00359-019-01379-5.
[20] Kistenpfennig C, Grebler R, Ogueta M, et al. A new rhodopsin influences light-dependent daily activity patterns of fruit flies. J Biol Rhythms. 2017;32(5):406–422.
doi: 10.1177/0748730417721826.
[21] Senthilan PR, Grebler R, Reinhard N, Rieger D, Helfrich-Förster C. Role of rhodopsins as circadian photoreceptors in the Drosophila melanogaster. Biology. 2019; 8(1):6. doi: 10.3390/biology8010006