Current Use of Calcium Sulfate Bone Grafts

Main Article Content

Andrew W. Barone, DDS Sebastiano Andreana, DDS, MS Rosemary Dziak, Ph.D


Bone graft placement is the most widely used therapeutic strategy for the surgical correction of osseous defects. In recent years, increasing attention has been given to the development of synthetic bone grafts. Of those currently available, calcium sulfate materials exhibit several unique properties that warrant discussion. These include their intrinsic osteogenic potential, their stimulatory effect on angiogenesis, the fact that they are fully biodegradable, the lack of proinflammatory responses following their placement in situ, and their lost cost of production. However, despite the attractiveness of these features, the use of calcium phosphate materials for bone grafting continues to be more widespread. This review examines the current use of calcium sulfate bone grafts in regenerative medicine. It also considers their clinical drawbacks before providing insight into the development of new calcium sulfate grafting constructs that might address these concerns.

Article Details

How to Cite
BARONE, Andrew W.; ANDREANA, Sebastiano; DZIAK, Rosemary. Current Use of Calcium Sulfate Bone Grafts. Medical Research Archives, [S.l.], v. 8, n. 11, dec. 2020. ISSN 2375-1924. Available at: <>. Date accessed: 28 nov. 2022. doi:
Review Articles


[1] Rios HF, Giannobile WV. Principles of bone biology and regeneration. Implant Site Development. 2015;30:1-3
[2] Salinas AJ, Vallet-Regí M. Bioactive ceramics: from bone grafts to tissue engineering. RSC advances. 2013;3:11116-11131
[3] Kuznetsova DS, Timashev PS, Bagratashvili VN, Zagaynova EV. Scaffold-and cell system-based bone grafts in tissue engineering. Medical Technologies in Medicine/Sovremennye Tehnologii v Medicine. 2014;6:201-211
[4] Griffin KS, Davis KM, McKinley TO, Anglen JO, Chu TM, Boerckel JD, et al. Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration. Clinical Reviews in Bone and Mineral Metabolism. 2015;13:232-44
[5] Samartzis D, Shen FH, Goldberg EJ, An HS. Is autograft the gold standard in achieving radiographic fusion in one-level anterior cervical discectomy and fusion with rigid anterior plate fixation?. Spine. 2005;30:1756-1761
[6] Zimmermann G, Moghaddam A. Allograft bone matrix versus synthetic bone graft substitutes. Injury. 2011;42:S16-S21
[7] Platt JL. A perspective on xenograft rejection and accommodation. Immunological reviews. 1994;141:127-149
[8] Rodriguez AE, Nowzari H. The long-term risks and complications of bovine-derived xenografts: A case series. Journal of Indian Society of Periodontology. 2019;23:487
[9] Carson JS, Bostrom MP. Synthetic bone scaffolds and fracture repair. Injury. 2007;38:S33-S37
[10] Liu Y, Lim J, Teoh SH. Development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnology advances. 2013;31:688-705
[11] Moore WR, Graves SE, Bain GI. Synthetic bone graft substitutes. ANZ journal of surgery. 2001;71:354-361
[12] Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury. 2011;42:S77-S81
[13] Thomas MV, Puleo DA, Al-Sabbagh M. Calcium sulfate: a review. Journal of long-term effects of medical implants. 2005;15:599-607
[14] Laurencin C, Khan Y, El-Amin SF. Bone graft substitutes. Expert review of medical devices. 2006;3:49-57
[15] Kumar P, Vinitha B, Fathima G. Bone grafts in dentistry. Journal of pharmacy & bioallied sciences. 2013;5:S125
[16] Bohner M, Galea L, Doebelin N. Calcium phosphate bone graft substitutes: Failures and hopes. Journal of the european ceramic society. 2012;32:2663-2671
[17] Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. Journal of Prosthodontics. 2006;15:321-328
[18] Hing KA, Wilson LF, Buckland T. Comparative performance of three ceramic bone graft substitutes. The Spine Journal. 2007;7:475-490
[19] Gonda Y, Ioku K, Shibata Y, Okuda T, Kawachi G, Kamitakahara M, et al. Stimulatory effect of hydrothermally synthesized biodegradable hydroxyapatite granules on osteogenesis and direct association with osteoclasts. Biomaterials. 2009;30:4390-4400
[20] Xia Z, Grover LM, Huang Y, Adamopoulos IE, Gbureck U, Triffitt JT, et al. In vitro biodegradation of three brushite calcium phosphate cements by a macrophage cell-line. Biomaterials. 2006;27:4557-4565
[21] Rumpel E, Wolf E, Kauschke E, Bienengräber V, Bayerlein T, Gedrange T, et al. The biodegradation of hydroxyapatite bone graft substitutes in vivo. Folia morphologica. 2006;65:43-48
[22] Chen CC, Wang CW, Hsueh NS, Ding SJ. Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate. Journal of alloys and compounds. 2014;585:25-31
[23] Baranes D, Kurtzman GM. Biphasic Calcium Sulfate as an alternative grafting material in various dental applications. Journal of Oral Implantology. 2019;45:247-255
[24] Yahav A, Kurtzman GM, Katzap M, Dudek D, Baranes D. Bone Regeneration: Properties and Clinical Applications of Biphasic Calcium Sulfate. Dental Clinics. 2020;64:453-472
[25] Pecora G, Andreana S, Margarone III JE, Covani U, Sottosanti JS. Bone regeneration with a calcium sulfate barrier. Oral surgery, Oral medicine, Oral pathology, Oral radiology, and Endodontology. 1997;84:424-429
[26] Rodríguez-Sendra J, Jiménez N, Picó R, Faus J, Camarena F. Monitoring the Setting of Calcium Sulfate Bone-Graft Substitute Using Ultrasonic Backscattering. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2019;66:1658-1666
[27] Strocchi R, Orsini G, Iezzi G, Scarano A, Rubini C, Pecora G, et al. Bone regeneration with calcium sulfate: evidence for increased angiogenesis in rabbits. Journal of oral implantology. 2002;28:273-278
[28] Beuerlein MJ, McKee MD. Calcium sulfates: what is the evidence?. Journal of orthopaedic trauma. 2010;24:S46-S51
[29] Peltier LF. The use of plaster of Paris to fill defects in bone. Clinical Orthopaedics and Related Research®. 1961;21:1-31
[30] Tay BK, Patel VV, Bradford DS. Calcium sulfate–and calcium phosphate–based bone substitutes: mimicry of the mineral phase of bone. Orthopedic Clinics. 1999;30:615-623
[31] Coetzee AS. Regeneration of bone in the presence of calcium sulfate. Archives of Otolaryngology. 1980;106:405-409
[32] Chen Z, Liu H, Liu X, Cui FZ. Injectable calcium sulfate/mineralized collagen‐based bone repair materials with regulable self‐setting properties. Journal of Biomedical Materials Research Part A. 2011;99:554-563
[33] Intini G, Andreana S, Margarone Iii JE, Bush PJ, Dziak R. Engineering a bioactive matrix by modifications of calcium sulfate. Tissue engineering. 2002;8:997-1008
[34] Intini G, Andreana S, Intini FE, Buhite RJ, Bobek LA. Calcium sulfate and platelet-rich plasma make a novel osteoinductive biomaterial for bone regeneration. Journal of translational medicine. 2007;5:13
[35] Tuzuner T, Uygur I, Sencan I, Haklar U, Oktas B, Ozdemir D. Elution characteristics and mechanical properties of calcium sulfate-loaded bone cement containing teicoplanin. Journal of Orthopaedic Science. 2007;12:170-177
[36] Gitelis S, Brebach GT. The treatment of chronic osteomyelitis with a biodegradable antibiotic-impregnated implant. Journal of orthopaedic surgery. 2002;10:53-60
[37] Qin CH, Zhou CH, Song HJ, Cheng GY, Zhang HA, Fang J, et al. Infected bone resection plus adjuvant antibiotic-impregnated calcium sulfate versus infected bone resection alone in the treatment of diabetic forefoot osteomyelitis. BMC musculoskeletal disorders. 2019;20:246
[38] Qi Y, Wang Y, Yan W, Li H, Shi Z, Pan Z. Combined mesenchymal stem cell sheets and rhBMP-2-releasing calcium sulfate–rhBMP-2 scaffolds for segmental bone tissue engineering. Cell transplantation. 2012;21:693-705
[39] Aquino-Martínez R, Angelo AP, Pujol FV. Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration. Stem cell research & therapy. 2017;8:1-10
[40] Guarnieri R, Pecora G, Fini M, Aldini NN, Giardino R, Orsini G, et al. Medical grade calcium sulfate hemihydrate in healing of human extraction sockets: clinical and histological observations at 3 months. Journal of periodontology. 2004;75:902-908
[41] Shi B, Zhou Y, Wang YN. Alveolar ridge preservation prior to implant placement with surgical-grade calcium sulfate and platelet-rich plasma: a pilot study in a canine model. International Journal of Oral & Maxillofacial Implants. 2007;22:656-665
[42] Aimetti M, Romano F, Griga FB, Godio L. Clinical and histologic healing of human extraction sockets filled with calcium sulfate. International Journal of Oral & Maxillofacial Implants. 2009;24:902-909
[43] Kutkut A, Andreana S, Kim HL, Monaco Jr E. Extraction socket preservation graft before implant placement with calcium sulfate hemihydrate and platelet‐rich plasma: A clinical and histomorphometric study in humans. Journal of periodontology. 2012;83:401-409
[44] Toloue SM, Chesnoiu‐Matei I, Blanchard SB. A clinical and histomorphometric study of calcium sulfate compared with freeze‐dried bone allograft for alveolar ridge preservation. Journal of periodontology. 2012;83:847-855
[45] Cheah CW, Vaithilingam RD, Siar CH, Swaminathan D, Hornbuckle GC. Histologic, histomorphometric, and cone-beam computerized tomography analyses of calcium sulfate and platelet-rich plasma in socket preservation: A pilot study. Implant dentistry. 2014;23:593-601
[46] De Leonardis D, Pecora GE. Prospective study on the augmentation of the maxillary sinus with calcium sulfate: histological results. Journal of periodontology. 2000;71:940-947
[47] Dasmah A, Hallman M, Sennerby L, Rasmusson L. A clinical and histological case series study on calcium sulfate for maxillary sinus floor augmentation and delayed placement of dental implants. Clinical implant dentistry and related research. 2012;14:259-265
[48] Kelly CM, Wilkins RM, Gitelis S, Hartjen C, Watson JT, Kim PT. The use of a surgical grade calcium sulfate as a bone graft substitute: results of a multicenter trial. Clinical Orthopaedics and Related Research®. 2001;382:42-50
[49] Gitelis S, Piasecki P, Turner T, Haggard W, Charters J, Urban R. Use of a calcium sulfate-based bone graft substitute for benign bone lesions. Orthopedics. 2001;24:162-166
[50] Clayer M. Injectable form of calcium sulphate as treatment of aneurysmal bone cysts. ANZ journal of surgery. 2008;78:366-370
[51] Kim JH, Oh JH, Han I, Kim HS, Chung SW. Grafting using injectable calcium sulfate in bone tumor surgery: comparison with demineralized bone matrix-based grafting. Clinics in orthopedic surgery. 2011;3:191-201
[52] Evaniew N, Tan V, Parasu N, Jurriaans E, Finlay K, Deheshi B, et al. Use of a calcium sulfate–calcium phosphate synthetic bone graft composite in the surgical management of primary bone tumors. Orthopedics. 2013;36:216-222
[53] Ricci JL, Weiner MJ, Mamidwar S, Alexander H. Calcium sulfate. In Bioceramics and their Clinical Applications. Woodhead Publishing. 2008:302-325
[54] Podaropoulos L, Veis AA, Papadimitriou S, Alexandridis C, Kalyvas D. Bone regeneration using B-tricalcium phosphate in a calcium sulfate matrix. Journal of Oral Implantology. 2009;35:28-36
[55] Zima A, Paszkiewicz Z, Siek D, Czechowska J, Ślósarczyk A. Study on the new bone cement based on calcium sulfate and Mg, CO3 doped hydroxyapatite. Ceramics International. 2012;38:4935-4942
[56] Jepegnanam TS, von Schroeder HP. Rapid resorption of calcium sulfate and hardware failure following corrective radius osteotomy: 2 case reports. The Journal of hand surgery. 2012;37:477-480
[57] Glazer PA, Spencer UM, Alkalay RN, Schwardt J. In vivo evaluation of calcium sulfate as a bone graft substitute for lumbar spinal fusion. The Spine Journal. 2001;1:395-401
[58] Singh NB, Middendorf B. Calcium sulphate hemihydrate hydration leading to gypsum crystallization. Progress in crystal growth and characterization of materials. 2007;53:57-77
[59] Shaffer CD, App GR. The use of plaster of paris in treating infrabony periodontal defects in humans. Journal of periodontology. 1971;42:685-690
[60] Petruskevicius J, Nielsen S, Kaalund S, Knudsen PR, Overgaard S. No effect of Osteoset®, a bone graft substitute, on bone healing in humans: A prospective randomized double-blind study. Acta orthopaedica Scandinavica. 2002;73:575-578
[61] Tamboowalla KB, Thomas J, Madan Mohan M, Pilar A, Belliappa CP, Amaravathi RS. The Results of Synthetic Pure Calcium Sulfate Impregnated with Antibiotic in the Management of Bone Infections and Non-unions. Journal of Karnataka Orthopaedic Association. 2019;7:22-26
[62] Tan V, Evaniew N, Finlay K, Jurriaans E, Ghert M, Deheshi B, et al. Chronology of the radiographic appearances of the calcium sulfate-calcium phosphate synthetic bone graft composite following resection of bone tumors: a follow-up study of postoperative appearances. Canadian Association of Radiologists' Journal. 2016;67:21-27
[63] Crespi R, Capparè P, Gherlone E. Magnesium‐enriched hydroxyapatite compared to calcium sulfate in the healing of human extraction sockets: Radiographic and histomorphometric evaluation at 3 months. Journal of periodontology. 2009;80:210-218
[64] Hu P, Lun DX, Wang PS, Tu ZM. Effect of Particle Size Ratios on the Physical and Chemical Properties of Surgical‐Grade Calcium Sulfate Hemihydrate. Orthopaedic Surgery. 2020;12:295-303
[65] Dziak R, Barres L, Andreana S. Recent patents on nanoceramics and bone regeneration and repair. Recent Patents on Regenerative Medicine. 2014;4:94-102
[66] Padmanabhan J, Kyriakides TR. Nanomaterials, inflammation, and tissue engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2015;7:355-370
[67] Rogel MR, Qiu H, Ameer GA. The role of nanocomposites in bone regeneration. Journal of Materials Chemistry. 2008;18:4233-4241
[68] Duan B, Wang M. Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. Journal of the Royal Society Interface. 2010;7:S615-S629
[69] Tayalia P, Mooney DJ. Controlled growth factor delivery for tissue engineering. Advanced materials. 2009;21:3269-3285
[70] Whitaker MJ, Quirk RA, Howdle SM, Shakesheff KM. Growth factor release from tissue engineering scaffolds. Journal of Pharmacy and Pharmacology. 2001;53:1427-1437
[71] Rahman SU, Nagrath M, Ponnusamy S, Arany PR. Nanoscale and macroscale scaffolds with controlled-release polymeric systems for dental craniomaxillofacial tissue engineering. Materials. 2018;11:1478

[72] Park YB, Mohan K, Al-Sanousi A, Almaghrabi B, Genco RJ, Swihart MT, et al. Synthesis and characterization of nanocrystalline calcium sulfate for use in osseous regeneration. Biomedical Materials. 2011;6:055007
[73] He X, Dziak R, Mao K, Genco R, Swihart M, Li C, et al. Integration of a novel injectable nano calcium sulfate/alginate scaffold and BMP2 gene-modified mesenchymal stem cells for bone regeneration. Tissue Engineering Part A. 2013;19:508-518
[74] Barone A, Morrell A, Dziak R. Fabrication and Characterizatio n of NanoCalcium Sulfate and Human Platelet Lysate as a Growth Factor Delivery System. International Journal of Dentistry and Oral Health. 2016;2:doi
[75] Liu Z, Yuan X, Fernandes G, Dziak R, Ionita CN, Li C, et al. The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects. Stem Cell Research & Therapy. 2017;8:1-9
[76] Fageeh HN, Moussa H, Maddi A, Ciancio S, Dziak R. Nano-Calcium Sulfate as a Local Delivery System for Antibiotics. International Journal of Dentistry and Oral Health. 2017;3: doi
[77] Barone AW, Pringle M, Nguyen D, Dziak R. Dose-Related Effects of Melatonin on Human Osteoblastic Cells via in vitro Controlled Release from Nanoscale Calcium Sulfate International Journal of Dentistry and Oral Health. 2020;6:doi

[78] Khobragade P, Jain A, Nagesh SS, Andreana S, Dziak R, Sunkara SK, et al. Micro-Computed tomography (CT) based assessment of dental regenerative therapy in the canine mandible model. In Medical Imaging 2015: Biomedical Applications in Molecular, Structural, and Functional Imaging. International Society for Optics and Photonics. 2015:9417:94171