Total Internal Reflection Fluorescence Microscopy (TIRFM) – novel techniques and applications

Main Article Content

Verena Richter Michael Wagner Herbert Schneckenburger

Abstract

Total Internal Reflection Fluorescence Microscopy (TIRFM) has been established almost 40 years ago for studies of plasma membranes or membrane proximal sites of living cells. The method is based on light incidence at an angle above the critical angle of total internal reflection and generation of an evanescent electromagnetic field penetrating about 100 nm into a sample and permitting selective excitation of membrane proximal fluorophores. Two techniques are presented here: prism-type TIRFM and objective-type TIRFM with high aperture microscope objective lenses. Furthermore, numerous applications are summarized, e.g. measurement of focal adhesions, cell-substrate topology, endocytosis or exocytosis of vesicles as well as single molecule detection within thin layers. Finally, highly innovative combinations of TIRFM with Förster Resonance Energy Transfer (FRET) measurements as well as with Structured Illumination Microscopy (SIM) and fluorescence reader technologies are presented.

Keywords: Optical microscopy, living cells, TIRFM, FRET, SIM, fluorescence reader

Article Details

How to Cite
RICHTER, Verena; WAGNER, Michael; SCHNECKENBURGER, Herbert. Total Internal Reflection Fluorescence Microscopy (TIRFM) – novel techniques and applications. Medical Research Archives, [S.l.], v. 8, n. 11, dec. 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2287>. Date accessed: 24 jan. 2025. doi: https://doi.org/10.18103/mra.v8i11.2287.
Section
Research Articles

References

(1) Axelrod, D. Cell-substrate contacts illuminated by total internal reflection fluorescence, J. Cell Biol., 1981, 89:141145, doi: 10.1083/jcb.89.1.141.
(2) Schneckenburger, H. Total internal reflection fluorescence microscopy: technical innovations and novel applications, Curr. Opin. Biotechnol., 2005, 16:13-18, doi: 10.1016/j.copbio.2004.12.004.
(3) Axelrod, D. Selective imaging of surface fluorescence with very high aperture microscope objectives, J. Biomed. Opt., 2001, 6(1):613, doi: 10.1117/1.1335689.
(4) Stock, K, Sailer, R, Strauss, WSL, Lyttek, M, Steiner, R, Schneckenburger, H. Variable-angle total internal reflection fluorescence microscopy (VA-TIRFM): realization and application of a compact illumination device, J. Microsc., 2003, 211:1929, doi: 10.1046/j.1365-2818.2003.01200.x.
(5) Schneckenburger, H, Richter, V, Wagner, M. Live-cell optical microscopy with limited light doses, SPIE Spotlight Series, 2018, Vol. SL 42, 38 pages, ISBN: 9781510622593, doi: 10.1117/3.2505981.
(6) Chung, E, Kim, D, So, PT. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy, Opt. Lett., 2006, 31(7):945947, doi: 10.1364/OL.31.000945.
(7) Chung, E, Kim, D, Cui, Y, Kim, YH, So, PT. Two-dimensional standing wave total internal reflection fluorescence microscopy: superresolution imaging of single molecular and biological specimens, Biophys. J., 2007, 93(5):17471757, PMID: 17483188, doi: 10.1529/biophysj.106.097907.
(8) Brunstein, M, Wicker, K, Hérault, K, Heintzmann, R, Oheim, M. Full-field dual-color 100-nm super-resolution imaging reveals organization and dynamics of mitochondrial and ER networks, Opt. Express, 2013, 21(22):26162-26173, doi: 10.1364/OE.21.026162.
(9) Young, L.J, Ströhl, F, Kaminski, CF. A Guide to Structured Illumination TIRF Microscopy at high speed with multiple colors, J Vis. Exp., 2016, 111:e53988, doi:10.3791/53988.
(10) Guo, M, Chandris, P, Giannini, J.P, Trexler, AJ,Fischer, R, Chen, J, Vishwasrao, HD, Rey-Suarez, I, Wu, Y, Wu, X, Waterman, CM, Patterson, GH, Upadhyaya, A, Taraska, JW, Shroff, H. Single-shot super-resolution total internal reflection fluorescence microscopy, Nat. Methods, 2018, 15(6):425-428, doi: 10.1038/s41592-018-0004-4.
(11) Richter, V, Lanzerstorfer, P., Weghuber, J, Schneckenburger, H. Super-resolution live cell microscopy of membrane-proximal fluorophores, Int. J. Mol. Sci. 2020, 21(19):7099, doi: 10.3390/ijms21197099.
(12) Sund, SE, D. Axelrod, D. Actin dynamics at the living cell submembrane imaged by total internal reflection fluorescence photobleaching, Biophys. J., 2000, 79:16551669, doi: 10.1016/S0006-3495(00)76415-0.
(13) Betz, WJ, Mao, F, Smith, CB. Imaging exocytosis and endocytosis, Curr. Opin. Neurobiol., 1996, 6:365371, doi: 10.1016/s0959-4388(96)80121-8.
(14) Oheim, M, Loerke, D, Stühmer, W, Chow, RH. The last few milliseconds in the life of a secretory granule, Eur. J. Biophys., 1998, 27:8398, doi: 0.1007/s002490050114.
(15) Wagner, M, Weber, P, Strauss, WSL, Lassalle, HP, Schneckenburger, H. Nanotomography of cell surfaces with evanescent fields, Advances in Optical Technologies, 2008, Vol. 2008, Article ID 254317, doi: 10.1155/2008/254317.
(16) Wagner, M, Weber, P, Baumann, H, Schneckenburger, H. Nanotopology of cell adhesion upon variable-angle total internal reflection fluorescence microscopy (VA-TIRFM), J. Vis. Exp., 2012, 68:e4133, doi: 10.3791/4133.
(17) Förster, T. Zwischenmolekulare Energiewanderung und Fluoreszenz, Ann. Phys. 1948, 437:55–75, doi: 10.1002/andp.19484370105.
(18) Uster, PS, Pagano, RE. Resonance energy transfer microscopy: observations of membrane-bound fluorescent probes in model membranes and in living cell, J. Cell Biol., 1986, 103:12211234, doi: 10.1083/jcb.103.4.1221.
(19) Szöllösi, J, Damjanovich, S, Mulhern, SA, Tron, L. Fluorescence energy transfer and membrane potential measurements monitor dynamic properties of cell membranes: a critical review, Prog. Biophys. Molec. Biol., 1987, 49, 6587, doi: 10.1016/0079-6107(87)90009-5.
(20) Angres, B, Steuer, H, Weber, P, Wagner, M, Schneckenburger, H. A membrane-bound FRET-based caspase sensor for detection of apoptosis using fluorescence lifetime and total internal reflection microscopy, Cytometry, 2009, 75:420–427, doi: 10.1002/cyto.a.20698.
(21) Schütz, GJ, Huppa, JB. Förster Resonance Energy Transfer to Study TCR-pMHC Interactions in the Immunological Synapse, Methods Mol. Biol., 2017, 1584:207229, doi: 10.1007/978-1-4939-6881-7_14.
(22) Schneckenburger, H, Weber, P, Wagner, M, Enderle, S, Kalthof, B, Schneider, L, Herzog, C, Weghuber, J, Lanzerstorfer, P. Combining TIR and FRET in molecular test systems, Int. J. Mol. Sci, 2019, 20:648, doi: 10.3390/ijms20030648.
(23) Yamamura, H, Suzuki, Y, Imaizumi Y. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy, J. Pharmacol. Sci., 2015, 128(1):17, doi: 10.1016/j.jphs.2015.04.004.
(24) von Arnim, CAF, von Einem, B, Weber, P, Wagner, M, Schwanzar, D, Spoelgen, R, Strauss, WSL, Schneckenburger, H. Impact of cholesterol level upon APP and BACE proximity and APP cleavage, Biochem. Biophys. Res. Commun, 2008, 370:207-212, doi: 10.1016/j.bbrc.2008.03.047.
(25) Masi, A, Cicchi, R, Carloni, A, Pavone, FS, Arcangeli, A. Optical methods in the study of protein-protein interactions, Adv. Ex. Med. Biol., 2010, 674:3342, doi: 10.1007/978-1-4419-6066-5_4.
(26) Heintzmann, R, Cremer, C. Laterally modulated excitation microscopy: Improvement of resolution by using a diffraction grating, In: Optical Biopsies and Microscopic Techniques III, 1999, Proc. SPIE 3568:185196, doi.org/10.1117/12.336833.
(27) Gustafsson, M.G.L, Shao, L, Carlton, PM, Wang, CJR, Golubovskaya, IN, Cande, WZ, Agard, DA, Sedat, JW. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination, Biophys. J., 2008, 94(12):49574970, doi.org/10.1529/biophysj.107.120345.
(28) Richter, V, Piper, M, Wagner, M, Schneckenburger, H. Increasing resolution in live cell microscopy by Structured Illumination (SIM), Appl. Sci., 2019, 9(6):1188, doi: 10.3390/app9061188.
(29) Lanzerstorfer, P, Stadlbauer, V, Chtcheglova, LA, Haselgrübler, R, Borgmann, D, Wruss, J, Hinterdorfer, P, Schröder, K, Winkler, SM, Höglinger, O, Weghuber, J. Identification of novel insulin mimetic drugs by quantitative total internal reflection fluorescence (TIRF) microscopy, Br. J. Pharmacol., 2014, 171:5237–5251, doi:10.1111/bph.128.
(30) Haselgrübler, R Stadtbauer, V, Stübl, F, Schwarzinger, B, Rudzionyte, I, Himmelsbach, M, Iken, M, Weghuber, J. Insulin Mimetic Properties of Extracts Prepared from Bellis perennis, Molecules, 2018, 23(10):2605, doi: 10.3390/molecules23102605.
(31) Sabbatini, GP, Shirley, WA, Coffeen, DL. The integration of high throughput technologies for drug discovery, J Biomol Screening, 2001, 6:213–218, doi: 10.1177/108705710100600402.
(32) Eckert, GP, Cairns, NJ, Maras, A, Gattaz, WF, Muller, WE. Cholesterol modulates the membrane-disordering effects of beta-amloyid peptides in the hippocampus: specific changes in Alzheimer’s disease, Dementia Geriatr. Cognit. Disord., 2000, 11(4):181–186, doi: 10.1159/000017234.
(33) Aozaki, S. Decreased membrane fluidity in erythrocytes from patients with Crohn’s disease, Gastroenterol Jpn, 1989, 24(3), 246–254, doi: 10.1007/BF02774321.
(34) Koike, T, Ishida, G, Taniguchi, M, Higaki, K, Ayaki, Y, Saito, M, Sakakihara, Y, Iwamori, Y, Onno, K. Decreased membrane fluidity and unsaturated fatty acids in Niemann-Pick disease type C fibroblasts, Biochim. Biophys. Acta, 1998, 1406(3):327335, doi: 10.1016/s0925-4439(98)00019-2.
(35) Bruns, T, Strauss, W.S.L., Sailer, R., Wagner, M., Schneckenburger, H. Total internal reflectance fluorescence reader for selective investigations of cell membranes, J. Biomed. Opt., 2006, 11:034011, doi: 10.1117/1.2208617.
(36) Sako Y, Minoguchi S, Yanagida T. Single-molecule imaging of EGFR signalling on the surface of living cells, Nature Cell Biol., 2000, 2:168172, doi: 10.1038/35004044.
(37) Sako Y, Uyemura T. Total internal reflection fluorescence microscopy for single-molecule imaging in living cells, Cell Struct. Funct., 2002, 27:357356, doi: 10.1247/csf.27.357 .
(38) Betzig, E, Patterson, GH, Sougrat, R, Lindwasser, OW, Olenych, S, Bonifacino, JS, Davidson, MW, Lippincott-Schwartz, J, Hess, HF. Imaging intracellular fluorescent proteins at nanometer resolution, Science, 2006, 313(5793):1642–1645, doi: 10.1126/science.1127344.
(39) Rust, MJ, Bates, M, Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM), Nat. Methods, 2006, 3(10):793–796, doi: 10.1038/nmeth929.
(40) Cremer, C, Masters, BR. Resolution enhancement techniques in microscopy, Eur. Phys. J., H2013, 38:281344, doi: 10.1140/epjh/e2012-20060-1.