COVID-19 Attributed Cases and Deaths are Statistically Higher in States and Counties with 5th Generation Millimeter Wave Wireless Telecommunications in the United States.

Main Article Content

Angela Tsiang Magda Havas


COVID-19-attributed case and death rates for the U.S.A. were analyzed through May 2020 in three ways – for all 50 states, the country’s largest counties, and the largest counties in California – and found to be statistically significantly higher for states and counties with compared to those without 5G millimeter wave (mmW) technology. 5G mmW index was a statistically significant factor for the higher case and rates in all three analyses, while population density, air quality and latitude were significant for only one or two of the analyses.  For state averages, cases per million were 79% higher (p = 0.012), deaths per million were 94% higher (p = 0.049), cases per test were 68% higher (p = 0.003) and deaths per test were 81% higher (p = 0.025) for states with vs. without mmW. For county averages, cases per million were 87% higher (p = 0.005) and deaths per million were 165% higher (p = 0.012) for counties with vs. without mmW. While higher population density contributed to the higher mean case and death rates in the mmW states and counties, exposure to mmW had about the same impact as higher density of mmW states on mean case and death rates and about three times as much impact as higher density for mmW counties on mean case and death rates. Based on multiple linear regression, if there was no mmW exposure, case and death rates would be 18-30% lower for 5G mmW states and 39-57% lower for 5G mmW counties. This assessment clearly shows exposure to 5G mmW technology is statistically significantly associated with higher COVID-19 case and death rates in the U.S.A. The mechanism–should this be a causal relationship–may relate to changes in blood chemistry, oxidative stress, an impaired immune response, an altered cardiovascular and/or neurological response.

Article Details

How to Cite
TSIANG, Angela; HAVAS, Magda. COVID-19 Attributed Cases and Deaths are Statistically Higher in States and Counties with 5th Generation Millimeter Wave Wireless Telecommunications in the United States.. Medical Research Archives, [S.l.], v. 9, n. 4, apr. 2021. ISSN 2375-1924. Available at: <>. Date accessed: 14 may 2021. doi:
Research Articles


1. Worldometer. COVID-19 Corona virus Pandemic. Worldometer. Accessed April 22, May 15, May 31, August 9, 2020.
2. Fisher, T. 5G Availability Around the World. Lifewire. Accessed September 1, 2020.
3. WorldTimeZone. 5G commercial network world coverage map. WorldTime Zone. Accessed September 1, 2020.
4. European 5G Observatory. Announcements of Commercial Launches. European 5G Observatory. Accessed September 1, 2020.
5. RT. Spain rolls out 5G network using Huawei gear despite US blacklisting Chinese tech giant. RT. Accessed September 1, 2020.
6. Dano, M. Here Are the Big Winners in the FCC's 24GHz & 28GHz 5G Auctions. Lightreading. Accessed May 1, 2020.
7. Fletcher, B. FCC mmWave auction brings in more than $7.5B as clock phase ends. Fierce Wireless. Accessed May 1, 2020.
8. Kinney, S. What’s the outlook for millimeter wave 5G in the EU (and UK)?
RCRWireless News. Accessed September 1, 2020.
9. FCC. FCC-19-126 Resolution of Notice of Inquiry, Second Report and Order, Notice of Proposed Rulemaking, and Memorandum of Opinion and Order. 2019.
10. AT&T. Coverage Map for 5G+. AT&T. Accessed April 22, May 31, 2020.
11. T-Mobile. Coverage Map for Samsung Galaxy S10 5G. T-Mobile. Accessed April 22, May 31, 2020.
12. Verizon. Explore Verizon 5G Ultra Wideband Coverage. Verizon. Accessed April 22, May 31, 2020.
13. Johansson O, Redmayne M. Exacerbation of demyelinating syndrome after exposure to wireless modem with public hotspot. Electromagn Biol Med. 2016;35:393–397.
14. Nair, S. COVID-19 and Social Impact. Forbes. Accessed May 1, 2020.
15. Prata DN, Rodrigues W, Bermejo PH. Temperature significantly changes COVID-19 transmission in (sub)tropical cities of Brazil. Sci Total Environ. 2020;729: 138862.
16. Marik PE, Kory P, Varon J. Does vitamin D status impact mortality from SARS-CoV-2 infection? Med Drug Discov. 2020;100041.
17. Soleimani, B, Nanda U, Ross S. Does Density Determine COVID-19 Destiny? Let’s look at the Data. CADRE Research. Accessed May 1, 2020.
18. Fifi JT, Mocco J. COVID-19 related stroke in young individuals. Lancet Neuro.2020;19:713–715.
19. Lakhdari N, Tabet B, Boudraham L, Laoussati M, Aissanou S, Beddou L, Bensalem S, Bellik Y, Bournine L, Fatmi S, et al. M Red blood cells injuries and hypersegmented neutrophils in COVID-19 peripheral blood film. medRxiv. 2020;07.24.20160101.
20. Rubik B, Brown RR. Evidence for a Connection Between COVID-19 and Exposure to Radiofrequency Radiation from Wireless Telecommunications Including Microwaves and Millimeter Waves. OSF Preprints. 2021;01.04.
21. Lambert NJ, Survivor Corps. COVID-19 “Long Hauler” Symptoms Survey Report. Indiana University School of Medicine, 2020.
22. Belpomme D, Irigaray P. Electrohypersensitivity as a Newly Identified and Characterized Neurologic Pathological Disorder: How to Diagnose, Treat, and Prevent It. Int J Mol Sci. 2020;21(6),1915.
23. Kostoff RN, Briggs MB, Porter AL, Hernández AF, Abdollahi M, Aschner M, Tsatsakis A. The under-reported role of toxic substance exposures in the COVID-19 pandemic. Food Chem Toxicol. 2020;145:111687.
24. Mordachev VI. Correlation Between the Potential Electromagnetic Pollution Level and the Danger of COVID-19. 4G/5G/6G Can Be Safe for People. Dokl Bguir. 2020;18.
25. Johansson O. Disturbance of the immune system by electromagnetic fields—A potentially underlying cause for cellular damage and tissue repair reduction which could lead to disease and impairment. Pathophysiology. 2009; Electromagnetic Fields (EMF) Special Issue 16:157–177.
26. Szmigielski S. Reaction of the immune system to low-level RF/MW exposures. Sci Total Environ. 2013;454–455:393–400.
27. Belyaev I, Dean A, Eger H, Hubmann G, Jandrisovits R, Kern M, Kundi M, Moshammer H, Lercher P, Muller K, et al. EUROPAEM EMF Guideline 2016 for the prevention, diagnosis and treatment of EMF-related health problems and illnesses. Rev Environ Health. 2016;31(3):363-97.
28. Marshall TG, Heil TJR. Electrosmog and autoimmune disease. Immunol Res. 2017;65,129–135.
29. Aydin B, Akar A. Effects of a 900-MHz electromagnetic field on oxidative stress parameters in rat lymphoid organs, polymorphonuclear leukocytes and plasma. Arch Med Res. 2011;42:261–267.
30. Garaj-Vrhovac V, Gajski G, Pažanin S, Šarolić A, Domijan AM, Flajs D, Peraica M. Assessment of cytogenetic damage and oxidative stress in personnel occupationally exposed to the pulsed microwave radiation of marine radar equipment. Int J Hyg Environ Health. 2011;214:59–65.
31. Yakymenko I, Tsybulin O, Sidorik E, Henshel D, Kyrylenko O, Kyrylenko S. Oxidative mechanisms of biological activity of low-intensity radiofrequency radiation. Electromagn Biol Med. 2015;19:1–16.
32. Santini SJ, Cordone V, Falone S, Mijit M, Tatone C, Amicarelli F, Di Emidio G. Role of Mitochondria in the Oxidative Stress Induced by Electromagnetic Fields: Focus on Reproductive Systems. Oxid Med Cell Longev. 2018; 5076271.
33. Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag M. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med. 2019;38:32–47.
34. Mousavy SJ, Riazi GH, Kamarei M, Aliakbarian H, Sattarahmady N, Sharifizadeh A, Safarian S, Ahmad F, Moosavi-Movahedi AA. Effects of mobile phone radiofrequency on the structure and function of the normal human hemoglobin. Int J Biol Macromol. 2009;44:278–285.
35. Havas M. Radiation from wireless technology affects the blood, the heart, and the autonomic nervous system. Rev Environ Health. 2013;28:5–84.
36. Rubik B. Does Short-term Exposure to Cell Phone Radiation Affect the Blood? Wise Traditions in Food, Farming and the Healing Arts. 2014;15(4):19-28.
37. Zothansiama, Zosangzuali M, Lalramdinpuii M, Jagetia GC. Impact of radiofrequency radiation on DNA damage and antioxidants in peripheral blood lymphocytes of humans residing in the vicinity of mobile phone base stations. Electromagn Biol Med. 2017;36:295–305.
38. Fragopoulou AF, Polyzos A, Papadopoulou MD, Sansone A, Manta AK, Balafas E, Kostomitsopoulos N, Skouroliakou A, Chatgilialoglu C, Georgakilas A, et al. Hippocampal lipidome and transcriptome profile alterations triggered by acute exposure of mice to GSM 1800 MHz mobile phone radiation: An exploratory study. Brain Behav. 2018;8:e01001.
39. De Luca C, Thai JC, Raskovic D, Cesareo E, Caccamo D, Trukhanov A, Korkina L. Metabolic and genetic screening of electromagnetic hypersensitive subjects as a feasible tool for diagnostics and intervention. Mediators Inflamm. 2014;924184.
40. Belpomme D, Campagnac C, Irigaray P. Reliable disease biomarkers characterizing and identifying electrohypersensitivity and multiple chemical sensitivity as two etiopathogenic aspects of a unique pathological disorder. Rev Environ Health. 2015;30:251–271.
41. Johansson O. Electrohypersensitivity: a functional impairment due to an inaccessible environment. Rev Environ Health. 2015;30(4):311-21.
42. Russell CL. 5 G wireless telecommunications expansion: Public health and environmental implications. Environ Res. 2018;165:484–495.
43. BioInitiative Working Group, Sage C, Carpenter D (Eds.). BioInitiative Report: A Rationale for Biologically-Based Public Exposure Standards for Electromagnetic Radiation at 2012, 2012.
44. Kostoff RN, Heroux P, Aschner M, Tsatsakis A. Adverse health effects of 5G mobile networking technology under real-life conditions. Toxicol Lett. 2020;323:35–40.
45. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med. 2010;49:1603–1616.
46. Dauda Usman J, Isyaku UM, Magaji RA, Fasanmade AA. Assessment of electromagnetic fields, vibration and sound exposure effects from multiple transceiver mobile phones on oxidative stress levels in serum, brain and heart tissue. Sci Afr. 2020;7:e00271.
47. Kıvrak EG, Yurt KK, Kaplan A, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct. 2017;5:167–176.
48. Usselman RJ, Hill I, Singel DJ, Martino CF. Spin Biochemistry Modulates Reactive Oxygen Species (ROS) Production by Radio Frequency Magnetic Fields. PLOS ONE. 2014;9(3):e93065.
49. BERENIS January 2021 Newsletter, 2021.
50. Wyszkowska J, Jędrzejewski T, Piotrowski J, Wojciechowska A, Stankiewicz M, Kozak W. Evaluation of the influence of in vivo exposure to extremely low-frequency magnetic fields on the plasma levels of pro-inflammatory cytokines in rats. Int J Radiat Biol 2018;94:909–917.
51. El-Gohary OA, Said MA. Effect of electromagnetic waves from mobile phone on immune status of male rats: possible protective role of vitamin D. Can J Physiol Pharmacol. 2017; 95(2):151-156.
52. Díaz-Del Cerro E, Vida C, Martínez de Toda I, Félix J, De la Fuente M. The use of a bed with an insulating system of electromagnetic fields improves immune function, redox and inflammatory states, and decrease the rate of aging. Environ Health. 2020; Nov 23;19(1):118.
53. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, Derecki NC, Castle D, Mandell JW, Lee KS, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523:337–341.
54. Volkow ND, Tomasi D, Wang GJ, Vaska P, Fowler JS, Telang F, Alexoff D, Logan J, Wong C. Effects of Cell Phone Radiofrequency Signal Exposure on Brain Glucose Metabolism. JAMA. 2011;305:808–813.
55. Daneshkhah A, Agrawal V, Eshein A, Subramanian H, Roy HK, Backman V. The Possible Role of Vitamin D in Suppressing Cytokine Storm and Associated Mortality in COVID-19 Patients. medRxiv. 2020;2020.04.08.20058578.
56. Lau FH, Majumder R, Torabi R, Saeg F, Hoffman R, Cirillo JD, Greiffenstein P. Vitamin D Insufficiency is Prevalent in Severe COVID-19. medRxiv. 2020;2020.04.24.20075838.
57. Von Essen M, Kongsbak M, Schjerling P, Olgaard K, Ødum N, Geisler C. Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nat Immunol. 2010;11:344–9.
58. Polonikov A. Endogenous Deficiency of Glutathione as the Most Likely Cause of Serious Manifestations and Death in COVID-19 Patients. ACS Infect Dis 6: 1558–1562, 2020.
59. Jain S, Micinski D, Huning L, Kahlon G, Bass PF, Levine SN. Vitamin D and L-cysteine levels correlate positively with GSH and negatively with insulin resistance levels in the blood of type 2 diabetic patients. Eur J.Clin.Nutr. 2014;68: 1148–1153.
60. Horowitz RI, Freeman PR, Bruzzese J. Efficacy of glutathione therapy in relieving dyspnea associated with COVID-19 pneumonia: A report of 2 cases. Respir Med Case Rep. 2020;30:101063.
61. McMahon S, Grondin F, McDonald PP, Richard DE, Dubois CM. Hypoxia-enhanced Expression of the Proprotein Convertase Furin Is Mediated by Hypoxia-inducible Factor-1 IMPACT ON THE BIOACTIVATION OF PROPROTEINS. J Biol Chem. 2005;280:6561–6569.
62. Khademvatani K, Seyyed-Mohammadzad MH, Akbari M, Rezaei Y, Eskandari R, Rostamzadeh A. The relationship between vitamin D status and idiopathic lower-extremity deep vein thrombosis. Int J Gen Med. 2014;7:303–309.
63. Zalyubovskaya NP, Kiselev R. Effect of Radio Waves of a Millimeter Frequency Range on the Body of Man and Animals. Gigiyena Sanit. 1978;8:35-39.
64. Caprani A, Richert A, Flaud P. Experimental evidence of a potentially increased thrombo-embolic disease risk by domestic electromagnetic field exposure. Bioelectromagnetics 2004;25: 313–315.
65. Antonova N, Riha P. Studies of electrorheological properties of blood. Clin. Hemorheol Microcirc. 2006;35:19–29.
66. Pall ML. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J Cell Mol Med. 2013;17:958–965.
67. De Lorenzo A, Martinoli R, Carbonelli MG, Monteleone G, Di Lorenzo N, Di Daniele N. Resting metabolic rate incremented by pulsating electrostatic field (PESF) therapy. Diabetes Nutr Metab. 2004;17:309–312.
68. Gaynor JS, Hagberg S, Gurfein BT. Veterinary applications of pulsed electromagnetic field therapy. Res Vet Sci. 2018;119:1–8.
69. Logani M., Alekseev S, Bhopale MK, Slovinsky WS, Ziskin MC. Effect of millimeter waves and cyclophosphamide on cytokine regulation. Immunopharmacol Immunotoxicol. 2012;34: 107–112.
70. Makar V, Logani M, Szabo I, Ziskin M. Effect of millimeter waves on cyclophosphamide induced suppression of T cell functions. Bioelectromagnetics. 2003;24:356–365.
71. Gapeyev AB, Mikhailik EN, Chemeris NK. Features of anti-inflammatory effects of modulated extremely high-frequency electromagnetic radiation. Bioelectromagnetics. 2009;30:454–461.
72. Ramundo-Orlando A. Effects of Millimeter Waves Radiation on Cell Membrane - A Brief Review. J Infrared Milli Terahz Waves. 2010;31:1400–1411.
73. Puri BK, Segal DR, Monro JA. The effect of successful low-dose immunotherapy ascertained by provocation neutralization on lymphocytic calcium ion influx following electric field exposure. J Complement Integr Med. 2019;17:20170156.
74. Bai D, Fang L, Xia S, Ke W, Wang J, Wu X, Fang P, Xiao S. Porcine deltacoronavirus (PDCoV) modulates calcium influx to favor viral replication. Virology. 2020;539:38–48.
75. Chen X, Cao R, Zhong W. Host Calcium Channels and Pumps in Viral Infections. Cells. 2020;9:94.
76. Bouhaddou M, Memon D, Meyer B, White KM, Rezelj VV, Correa Marrero M, Polacco BJ, Melnyk JE, Ulferts S, Kaake RM, et al. The Global Phosphorylation Landscape of SARS-CoV-2 Infection. Cell 2020;182:685-712.e19.
77. Kovacic P, Somanathan R. Electromagnetic fields: Mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J Recept Signal Transduct Res. 2010;30:214–26.
78. Nyberg R, Hardell L. 5G Appeal Accessed September 1, 2020.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.