Time-course of adaptations for electroretinography and pupillography

Main Article Content

Ken Asakawa, PhD

Abstract

Cones are primarily involved in photopic vision and light adaptation. Rods are responsible for scotopic vision and dark adaptation. The typical time-courses of light and dark adaptations have been known for century. However, information regarding the minimal adaptation time for electroretinography (ERG) and pupillography would be helpful for practical applications and clinical efficiency. Therefore, we investigated the relationship between adaptation time and the parameters of ERG and pupillography. Forty-six eyes of 23 healthy women (mean age, 21.7 years) were enrolled. ERG and pupillography were tested for right and left eyes, respectively. ERG with a skin electrode was used to determine amplitude (µV) and implicit time (msec) by the records of rod-, flash-, cone-, and flicker-responses with white light (0.01–30 cd·s/m2). Infrared pupillography was used to record the pupillary response to 1-sec stimulation of red light (100 cd/m2). Cone- and flicker- (rod-, flash-, and pupil) responses were recorded after light (dark) adaptation at 1, 5, 10, 15, and 20 min. Amplitude was significantly different between 1 min and ≥5 or ≥10 min after adaptation in b-wave of cone- or rod-response, respectively. Implicit time differed significantly between 1 min and ≥5 min after adaptation with b-wave of cone- and rod-response. There were significant differences between 1 min and ≥10 or ≥5 min after dark adaptation in parameter of minimum pupil diameter or constriction rate, respectively. Consequently, light-adapted ERGs can be recorded, even in 5 min of light adaptation time without special light condition, whereas dark-adapted ERGs and pupillary response results can be obtained in 10 min or longer of dark adaptation time in complete darkness.

Article Details

How to Cite
ASAKAWA, Ken. Time-course of adaptations for electroretinography and pupillography. Medical Research Archives, [S.l.], v. 9, n. 4, apr. 2021. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2385>. Date accessed: 14 may 2021. doi: https://doi.org/10.18103/mra.v9i4.2385.
Section
Review Articles

References

1. Hecht S. The dark adaptation of the human eye. J Gen Physiol. 1920 May 20;2(5):499-517.
doi: 10.1085/jgp.2.5.499.
2. Schouten JF, Ornstein LS. Measurements on direct and indirect adaptation by means of a binocular method. J Opt Soc Am. 1939 April 1;29(4):168-182. doi:10.1364/JOSA.29.000168.
3. Wald G, Clark AB. Visual adaptation and chemistry of the rods. J Gen Physiol. 1937 Sep 20;21(1):93-105. doi: 10.1085/jgp.21.1.93.
4. Karpe G. Apparatus and method for clinical recording of the electroretinogram. Doc Ophthalmol. 1948 Jan;2(1):268-276.
doi: 10.1007/BF00204534.
5. McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol. 2015 Jan;5(1):439-473.
doi: 10.1002/cphy.c140014.
6. Lowenstein O, Feinberg R, Lowenfeld IE. Pupillary movements during acute and chronic fatigue: A new test for the objective evaluation of tiredness. Invest Ophthalmol Vis Sci. 1963 April;2(2):138-157.
7. Wilhelm B, Giedke H, Ludtke H, Bittner E, Hofmann A, Wilhelm H. Daytime variations in central nervous system activation measured by a pupillographic sleepiness test. J Sleep Res. 2001 Mar;10(1):1-7. doi: 10.1046/j.1365-2869.2001.00239.x.
8. Yamashita T, Miki A, Tabuchi A, Funada H, Kondo M. A novel method to reduce noise in electroretinography using skin electrodes: a study of noise level, inter-session variability, and reproducibility. Int Ophthalmol. 2017 Apr;37(2):317-324. doi: 10.1007/s10792-016-0240-5.
9. Thompson HS, Franceschetti AT, Thompson PM. Hippus. Semantic and historic considerations of the word. Am J Ophthalmol. 1971 May;71(5):1116-1120. PMID: 4935041
10. McCulloch DL, Marmor MF, Brigell MG, Hamilton R, Holder GE, Tzekov R, et al. ISCEV Standard for full-field clinical electroretinography (2015 update). Doc Ophthalmol. 2015 Feb;130(1):1-12. doi: 10.1007/s10633-014-9473-7.
11. Fotiou F, Fountoulakis KN, Goulas A, Alexopoulos L, Palikaras A. Automated standardized pupillometry with optical method for purposes of clinical practice and research. Clin Physiol. 2000 Sep;20(5):336-347. doi: 10.1046/j.1365-2281.2000.00259.x.
12. Schnitzler EM, Baumeister M, Kohnen T. Scotopic measurement of normal pupils: Colvard versus Video Vision Analyzer infrared pupillometer. J Cataract Refract Surg. 2000 Jun;26(6):859-866.
doi: 10.1016/s0886-3350(00)00486-7.
13. Bradley JC, Bentley KC, Mughal AI, Bodhireddy H, Young RS, Brown SM. The effect of gender and iris color on the dark-adapted pupil diameter. J Ocul Pharmacol Ther. 2010 Aug;26(4):335-340. doi: 10.1089/jop.2010.0061.
14. Lorenz B, Strohmayr E, Zahn S, Friedburg C, Kramer M, Preising M, et al. Chromatic pupillometry dissects function of the three different light-sensitive retinal cell populations in RPE65 deficiency. Invest Ophthalmol Vis Sci. 2012 Aug 17;53(9):5641-5652. doi: 10.1167/iovs.12-9974.
15. Bremner FD. Pupillometric evaluation of the dynamics of the pupillary response to a brief light stimulus in healthy subjects. Invest Ophthalmol Vis Sci. 2012 Oct 23;53(11):7343-7347. doi: 10.1167/iovs.12-10881.
16. Wang B, Shen C, Zhang L, Qi L, Yao L, Chen J, et al. Dark adaptation-induced changes in rod, cone and intrinsically photosensitive retinal ganglion cell (ipRGC) sensitivity differentially affect the pupil light response (PLR). Graefes Arch Clin Exp Ophthalmol. 2015 Nov;253(11):1997-2005. doi: 10.1007/s00417-015-3137-5.
17. Traustason S, Brondsted AE, Sander B, Lund-Andersen H. Pupillary response to direct and consensual chromatic light stimuli. Acta Ophthalmol. 2016 Feb;94(1):65-69. doi: 10.1111/aos.12894.
18. Satou T, Ishikawa H, Asakawa K, Goseki T, Shimizu K. Effects of ripasudil hydrochloride hydrate instillation on pupil dynamics. Curr Eye Res. 2017 Jan;42(1):54-57. doi: 10.3109/02713683.2016.1148740.
19. Yuhas PT, Shorter PD, McDaniel CE, Earley MJ, Hartwick AT. Blue and red light-evoked pupil responses in photophobic subjects with TBI. Optom Vis Sci. 2017 Jan;94(1):108-117. doi: 10.1097/OPX.0000000000000934.
20. Lisowska J, Lisowski L, Kelbsch C, Maeda F, Richter P, Kohl S, et al. Development of a chromatic pupillography protocol for the first gene therapy trial in patients with CNGA3-linked achromatopsia. Invest Ophthalmol Vis Sci. 2017 Feb 1;58(2):1274-1282. doi: 10.1167/iovs.16-20505.
21. Lawlor M, Quartilho A, Bunce C, Nathwani N, Dowse E, Kamal D, et al. Patients with normal tension glaucoma have relative sparing of the relative afferent pupillary defect compared to those with open angle glaucoma and elevated intraocular pressure. Invest Ophthalmol Vis Sci. 2017 Oct 1;58(12):5237-5241. doi: 10.1167/iovs.17-21688.
22. Crippa SV, Pedrosa Domellöf F, Kawasaki A. Chromatic pupillometry in children. Front Neurol. 2018 Aug 17;9:669. doi: 10.3389/fneur.2018.00669.
23. Baylor DA, Nunn BJ, Schnapf JL. The photocurrent, noise and spectral sensitivity of rods of the monkey Macaca fascicularis. J Physiol. 1984 Dec;357:575-607. doi: 10.1113/jphysiol.1984.sp015518.
24. Pugh E, Altman J. Phototransduction. A role for calcium in adaptation. Nature 1988 Jul 7;334(6177):16-17. doi: 10.1038/334016a0.
25. Rushton WA. Rhodopsin measurement and dark-adaptation in a subject deficient in cone vision. J Physiol. 1961 Apr;156 (1):193-205. doi: 10.1113/jphysiol.1961.sp006668.
26. Normann RA, Werblin FS. Control of retinal sensitivity. I. Light and dark adaptation of vertebrate rods and cones. J Gen Physiol. 1974 Jan;63(1):37-61. doi: 10.1085/jgp.63.1.37.
27. Glezer VD. The receptive fields of the retina. Vision Res. 1965 Oct;5(9):497-525. doi: 10.1016/0042-6989(65)90084-2.
28. Aguilar M, Stiles WS. Saturation of the rod mechanism of the retina at high levels of stimulation. Optica Acta. 1954 Jan;1(1):59-65. doi: 10.1080/713818657.
29. Baker HD. The course of foveal light adaptation measured by the threshold intensity increment. J Opt Soc Am. 1949 Feb;39(2):172-179. doi: 10.1364/josa.39.000172.
30. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM. Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res. 2007 Mar;47(7):946-954. doi: 10.1016/j.visres.2006.12.015.
31. Kardon R, Anderson SC, Damarjian TG, Grace EM, Stone E, Kawasaki A. Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex. Ophthalmology 2009 Aug;116(8):1564-1573. doi: 10.1016/j.ophtha.2009.02.007.
32. Asakawa K, Ishikawa H, Uga S, Mashimo K, Shimizu K, Kondo M, et al. Functional and morphological study of retinal photoreceptor cell degeneration in transgenic rabbits with a Pro347Leu rhodopsin mutation. Jpn J Ophthalmol 2015 Sep;59(5):353-363. doi: 10.1007/s10384-015-0400-6.
33. Asakawa K, Ishikawa H. Electroretinography and pupillography in unilateral foveal hypoplasia. J Pediatr Ophthalmol Strabismus. 2016 Jun 3;53:26-28. doi: 10.3928/01913913-20160509-04.
34. Lie I. Dark adaptation and the photochromatic interval. Doc Ophthalmol. 1963 Jan 1;17:411-510. doi: 10.1007/BF00573528.
35. Yanagisawa Y, Yoshino H, Ishikawa S, Miyata M. Chemical sensitivity and sick-building syndrome. CRC Press, Boca Raton, FL, USA. 2017.
36. Yamaji K, Yoshitomi T, Usui S, Ohnishi Y. Mechanical properties of the rabbit iris smooth muscles. Vision Res. 2003 Feb;43(4):479-487. doi: 10.1016/s0042-6989(02)00574-6.
37. Tsujisawa I, Mukuno K, Ishikawa S. The pupillary change in the course of brain death. J Auton Nerv Syst. 1989 Feb;26(1):63-70 (in Japanese).
38. Lowenstein O. Pupillary reflex shapes and topical clinical diagnosis. Neurology 1955 Sep;5(9):631-644. doi: 10.1212/wnl.5.9.631.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.