Main Article Content

Dilip Harindran Vallathol, MBBS, MD, DM Raghunadharao Digumarti, MBBS, MD, DM, FRCP (Lond), FACP


Targeted radiotherapy is an evolving and promising modality of cancer treatment. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. A number of radionuclides, such as iodine-131 (131I), phosphorus-32 (32P), strontium-90 (90Sr), and yttrium-90 (90Y), have been used successfully for the treatment of many benign and malignant disorders. The toxicity to radionuclides has come into vogue with its increasing utilization for multiple indications. Short term hematological toxicities include cytopenias and long term hematological toxicities include myeloid neoplasms. Non hematological toxicities commonly include renal and hepatotoxicity and long term toxicities like gonadal toxicity. This review focuses on the toxicities which need to be monitored during use of therapeutic radionuclides.


Article Details

How to Cite
VALLATHOL, Dilip Harindran; DIGUMARTI, Raghunadharao. AN UPDATE ON TOXICITY OF THERAPEUTIC RADIONUCLIDES. Medical Research Archives, [S.l.], v. 9, n. 4, apr. 2021. ISSN 2375-1924. Available at: <>. Date accessed: 14 may 2021. doi:
Research Articles


1) Pouget JP, Lozza C, Deshayes E, Boudousq V, Navarro-Teulon I. Introduction to radiobiology of targeted radionuclide therapy. Front Med (Lausanne). 2015;2:12. Published 2015 Mar 17. doi:10.3389/fmed.2015.00012
2) Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges [published correction appears in Nat Rev Drug Discov. 2020 Sep 7;:]. Nat Rev Drug Discov. 2020;19(9):589-608. doi:10.1038/s41573-020-0073-9
3) Qaim SM, Tarkanyi F, Capote R. Nuclear data for the production of therapeutic radionuclides. Vienna, Austria: International Atomic Energy Agency; 2011
4) Yeong CH, Cheng MH, Ng KH. Therapeutic radionuclides in nuclear medicine: current and future prospects. J Zhejiang Univ Sci B. 2014;15(10):845-863. doi:10.1631/jzus.B1400131
5) Ersahin D, Doddamane I, Cheng D. Targeted radionuclide therapy. Cancers (Basel). 2011;3(4):3838-3855. Published 2011 Oct 11. doi:10.3390/cancers3043838
6) Yordanova A, Eppard E, Kürpig S, et al. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821-4828. Published 2017 Oct 3. doi:10.2147/OTT.S140671
7) Kassis AI. Therapeutic radionuclides: biophysical and radiobiologic principles. Semin Nucl Med. 2008;38(5):358-366. doi:10.1053/j.semnuclmed.2008.05.002
8) Kassis AI. The amazing world of auger electrons. Int J Radiat Biol. 2004;80(11-12):789-803. doi:10.1080/09553000400017663
9) International Atomic Energy Agency, A Basic Toxicity Classification of Radionuclides, Technical Reports Series No. 15, IAEA, Vienna
10) Hobbs RF, Howell RW, Song H, Baechler S, Sgouros G. Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy. Radiat Res. 2014;181(1):90-98. doi:10.1667/RR13483.1
11) Fowler JF. 21 years of biologically effective dose. Br J Radiol. 2010;83(991):554-568. doi:10.1259/bjr/31372149
12) Basch E, Reeve BB, Mitchell SA, et al. Development of the National Cancer Institute's patient-reported outcomes version of the common terminology criteria for adverse events (PRO-CTCAE). J Natl Cancer Inst. 2014;106(9):dju244. Published 2014 Sep 29. doi:10.1093/jnci/dju244
13) Kunos CA, Capala J, Finnigan S, Smith GL, Ivy SP. Radiopharmaceuticals for Relapsed or Refractory Ovarian Cancers. Front Oncol. 2019;9:180. Published 2019 Mar 26. doi:10.3389/fonc.2019.00180
14) Thanarajasingam G, Minasian LM, Baron F, et al. Beyond maximum grade: modernising the assessment and reporting of adverse events in haematological malignancies [published correction appears in Lancet Haematol. 2019 Mar;6(3):e121]. Lancet Haematol. 2018;5(11):e563-e598. doi:10.1016/S2352-3026(18)30051-6
15) Lambert B, Cybulla M, Weiner SM, et al. Renal toxicity after radionuclide therapy. Radiat Res. 2004;161(5):607-611. doi:10.1667/rr3105
16) Kerns SL, Ostrer H, Rosenstein BS. Radiogenomics: using genetics to identify cancer patients at risk for development of adverse effects following radiotherapy. Cancer Discov. 2014;4(2):155-165. doi:10.1158/2159-8290.CD-13-0197
17) Bodei L, Schöder H, Baum RP, et al. Molecular profiling of neuroendocrine tumours to predict response and toxicity to peptide receptor radionuclide therapy. Lancet Oncol. 2020;21(9):e431-e443. doi:10.1016/S1470-2045(20)30323-5
18) Abdelsayed GG. Management of radiation-induced nausea and vomiting. Exp Hematol. 2007;35(4 Suppl 1):34-36. doi:10.1016/j.exphem.2007.01.010
19) Hsiao CP, Daly B, Saligan LN. The Etiology and management of radiotherapy-induced fatigue. Expert Rev Qual Life Cancer Care. 2016;1(4):323-328. doi:10.1080/23809000.2016.1191948
20) Taïeb D, Foletti JM, Bardiès M, Rocchi P, Hicks RJ, Haberkorn U. PSMA-Targeted Radionuclide Therapy and Salivary Gland Toxicity: Why Does It Matter?. J Nucl Med. 2018;59(5):747-748. doi:10.2967/jnumed.118.207993
21) Kesavan M, Turner JH. Myelotoxicity of Peptide Receptor Radionuclide Therapy of Neuroendocrine Tumors: A Decade of Experience. Cancer Biother Radiopharm. 2016;31(6):189-198. doi:10.1089/cbr.2016.2035
22) Vegt E, de Jong M, Wetzels JF, et al. Renal toxicity of radiolabeled peptides and antibody fragments: mechanisms, impact on radionuclide therapy, and strategies for prevention. J Nucl Med. 2010;51(7):1049-1058. doi:10.2967/jnumed.110.075101
23) Erbas B, Tuncel M. Renal Function Assessment During Peptide Receptor Radionuclide Therapy. Semin Nucl Med. 2016;46(5):462-478. doi:10.1053/j.semnuclmed.2016.04.006
24) Pan CC, Kavanagh BD, Dawson LA, et al. Radiation-associated liver injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S94-S100. doi:10.1016/j.ijrobp.2009.06.092
25) Currie BM, Hoteit MA, Ben-Josef E, Nadolski GJ, Soulen MC. Radioembolization-Induced Chronic Hepatotoxicity: A Single-Center Cohort Analysis. J Vasc Interv Radiol. 2019;30(12):1915-1923. doi:10.1016/j.jvir.2019.06.003
26) Su YK, Mackey RV, Riaz A, et al. Long-Term Hepatotoxicity of Yttrium-90 Radioembolization as Treatment of Metastatic Neuroendocrine Tumor to the Liver. J Vasc Interv Radiol. 2017;28(11):1520-1526. doi:10.1016/j.jvir.2017.05.011
27) Sonbol MB, Halfdanarson TR, Hilal T. Assessment of Therapy-Related Myeloid Neoplasms in Patients With Neuroendocrine Tumors After Peptide Receptor Radionuclide Therapy: A Systematic Review. JAMA Oncol. 2020;6(7):1086-1092. doi:10.1001/jamaoncol.2020.0078
28) Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42(1):5-19. doi:10.1007/s00259-014-2893-5
29) Bergsma H, van Lom K, Raaijmakers MHGP, et al. Persistent Hematologic Dysfunction after Peptide Receptor Radionuclide Therapy with 177Lu-DOTATATE: Incidence, Course, and Predicting Factors in Patients with Gastroenteropancreatic Neuroendocrine Tumors. J Nucl Med. 2018;59(3):452-458. doi:10.2967/jnumed.117.189712
30) Takahashi K, Wang F, Kantarjian H, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case-control study. Lancet Oncol. 2017;18(1):100-111. doi:10.1016/S1470-2045(16)30626-X
31) Van Binnebeek S, Baete K, Terwinghe C, et al. Significant impact of transient deterioration of renal function on dosimetry in PRRT. Ann Nucl Med. 2013;27(1):74-77. doi:10.1007/s12149-012-0651-y
32) Hyer SL, Newbold K, Harmer CL. Early and late toxicity of radioiodine therapy: detection and management. Endocr Pract. 2010;16(6):1064-1070. doi:10.4158/EP10170.RA
33) Bergsma H, Konijnenberg MW, Kam BL, et al. Subacute haematotoxicity after PRRT with (177)Lu-DOTA-octreotate: prognostic factors, incidence and course. Eur J Nucl Med Mol Imaging. 2016;43(3):453-463. doi:10.1007/s00259-015-3193-4
34) Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. N Engl J Med. 2017;376(2):125-135. doi:10.1056/NEJMoa1607427
35) Zechmann CM, Afshar-Oromieh A, Armor T, et al. Radiation dosimetry and first therapy results with a (124)I/ (131)I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. Eur J Nucl Med Mol Imaging. 2014;41(7):1280-1292. doi:10.1007/s00259-014-2713-y
36) Afshar-Oromieh A, Haberkorn U, Zechmann C, et al. Repeated PSMA-targeting radioligand therapy of metastatic prostate cancer with 131I-MIP-1095. Eur J Nucl Med Mol Imaging. 2017;44(6):950-959. doi:10.1007/s00259-017-3665-9
37) Imhof A, Brunner P, Marincek N, et al. Response, survival, and long-term toxicity after therapy with the radiolabeled somatostatin analogue [90Y-DOTA]-TOC in metastasized neuroendocrine cancers. J Clin Oncol. 2011;29(17):2416-2423. doi:10.1200/JCO.2010.33.7873
38) Dorn R, Kopp J, Vogt H, Heidenreich P, Carroll RG, Gulec SA. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: largest safe dose using a risk-adapted approach. J Nucl Med. 2003;44(3):451-456.
39) Andresen NS, Buatti JM, Tewfik HH, Pagedar NA, Anderson CM, Watkins JM. Radioiodine Ablation following Thyroidectomy for Differentiated Thyroid Cancer: Literature Review of Utility, Dose, and Toxicity. Eur Thyroid J. 2017;6(4):187-196. doi:10.1159/000468927
40) Alevizaki C, Molfetas M, Samartzis A, et al. Iodine 131 treatment for differentiated thyroid carcinoma in patients with end stage renal failure: dosimetric, radiation safety, and practical considerations. Hormones (Athens). 2006;5(4):276-287. doi:10.14310/horm.2002.11193
41) BENUA RS, CICALE NR, SONENBERG M, RAWSON RW. The relation of radioiodine dosimetry to results and complications in the treatment of metastatic thyroid cancer. Am J Roentgenol Radium Ther Nucl Med. 1962;87:171-182.
42) Brown AP, Chen J, Hitchcock YJ, Szabo A, Shrieve DC, Tward JD. The risk of second primary malignancies up to three decades after the treatment of differentiated thyroid cancer. J Clin Endocrinol Metab. 2008;93(2):504-515. doi:10.1210/jc.2007-1154
43) Teng CJ, Hu YW, Chen SC, et al. Use of Radioactive Iodine for Thyroid Cancer and Risk of Second Primary Malignancy: A Nationwide Population-Based Study. J Natl Cancer Inst. 2015;108(2):djv314. Published 2015 Nov 3. doi:10.1093/jnci/djv314
44) Allweiss P, Braunstein GD, Katz A, Waxman A. Sialadenitis following I-131 therapy for thyroid carcinoma: concise communication. J Nucl Med. 1984;25(7):755-758.
45) Alexander C, Bader JB, Schaefer A, Finke C, Kirsch CM. Intermediate and long-term side effects of high-dose radioiodine therapy for thyroid carcinoma. J Nucl Med. 1998;39(9):1551-1554.
46) Mandel SJ, Mandel L. Radioactive iodine and the salivary glands. Thyroid. 2003;13(3):265-271. doi:10.1089/105072503321582060
47) Hyer S, Kong A, Pratt B, Harmer C. Salivary gland toxicity after radioiodine therapy for thyroid cancer. Clin Oncol (R Coll Radiol). 2007;19(1):83-86. doi:10.1016/j.clon.2006.11.005
48) Vini L, Hyer S, Al-Saadi A, Pratt B, Harmer C. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J. 2002;78(916):92-93. doi:10.1136/pmj.78.916.92
49) Sawka AM, Thabane L, Parlea L, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19(5):451-457. doi:10.1089/thy.2008.0392
50) Yu CY, Saeed O, Goldberg AS, et al. A Systematic Review and Meta-Analysis of Subsequent Malignant Neoplasm Risk After Radioactive Iodine Treatment of Thyroid Cancer. Thyroid. 2018;28(12):1662-1673. doi:10.1089/thy.2018.0244
51) Parker C, Nilsson S, Heinrich D, et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med. 2013;369(3):213-223. doi:10.1056/NEJMoa1213755
52) McKay RR, Jacobus S, Fiorillo M, et al. Radium-223 Use in Clinical Practice and Variables Associated With Completion of Therapy. Clin Genitourin Cancer. 2017;15(2):e289-e298. doi:10.1016/j.clgc.2016.08.015
53) Vogelzang NJ, Coleman RE, Michalski JM, et al. Hematologic Safety of Radium-223 Dichloride: Baseline Prognostic Factors Associated With Myelosuppression in the ALSYMPCA Trial. Clin Genitourin Cancer. 2017;15(1):42-52.e8. doi:10.1016/j.clgc.2016.07.027
54) Huynh-Le MP, Shults RC, Connor MJ, Hattangadi-Gluth JA. Adverse Events Associated With Radium-223 in Metastatic Prostate Cancer: Disproportionality Analysis of FDA Data Reflecting Worldwide Utilization. Clin Genitourin Cancer. 2020;18(3):192-200.e2. doi:10.1016/j.clgc.2019.11.017
55) Bleeker G, Schoot RA, Caron HN, et al. Toxicity of upfront ¹³¹I-metaiodobenzylguanidine (¹³¹I-MIBG) therapy in newly diagnosed neuroblastoma patients: a retrospective analysis. Eur J Nucl Med Mol Imaging. 2013;40(11):1711-1717. doi:10.1007/s00259-013-2510-z
56) Matthay KK, Quach A, Huberty J, et al. Iodine-131--metaiodobenzylguanidine double infusion with autologous stem-cell rescue for neuroblastoma: a new approaches to neuroblastoma therapy phase I study. J Clin Oncol. 2009;27(7):1020-1025. doi:10.1200/JCO.2007.15.7628
57) Ezziddin S, Sabet A, Logvinski T, et al. Long-term outcome and toxicity after dose-intensified treatment with 131I-MIBG for advanced metastatic carcinoid tumors. J Nucl Med. 2013;54(12):2032-2038. doi:10.2967/jnumed.112.119313
58) Pryma DA, Chin BB, Noto RB, et al. Efficacy and Safety of High-Specific-Activity 131I-MIBG Therapy in Patients with Advanced Pheochromocytoma or Paraganglioma. J Nucl Med. 2019;60(5):623-630. doi:10.2967/jnumed.118.217463
59) Polishchuk AL, Dubois SG, Haas-Kogan D, Hawkins R, Matthay KK. Response, survival, and toxicity after iodine-131-metaiodobenzylguanidine therapy for neuroblastoma in preadolescents, adolescents, and adults. Cancer. 2011;117(18):4286-4293. doi:10.1002/cncr.25987
60) Zuckerman DA, Kennard RF, Roy A, Parikh PJ, Weiner AA. Outcomes and toxicity following Yttrium-90 radioembolization for hepatic metastases from neuroendocrine tumors-a single-institution experience. J Gastrointest Oncol. 2019;10(1):118-127. doi:10.21037/jgo.2018.10.05
61) Maker AV, August C, Maker VK, Weisenberg E. Hepatectomy After Yttrium-90 (Y90) Radioembolization-Induced Liver Fibrosis. J Gastrointest Surg. 2016;20(4):869-870. doi:10.1007/s11605-016-3077-3
62) Saxena A, Kapoor J, Meteling B, Morris DL, Bester L. Yttrium-90 radioembolization for unresectable, chemoresistant breast cancer liver metastases: a large single-center experience of 40 patients. Ann Surg Oncol. 2014;21(4):1296-1303. doi:10.1245/s10434-013-3436-1
63) Su YK, Mackey RV, Riaz A, et al. Long-Term Hepatotoxicity of Yttrium-90 Radioembolization as Treatment of Metastatic Neuroendocrine Tumor to the Liver. J Vasc Interv Radiol. 2017;28(11):1520-1526. doi:10.1016/j.jvir.2017.05.011
64) Witzig TE, White CA, Gordon LI, et al. Safety of yttrium-90 ibritumomab tiuxetan radioimmunotherapy for relapsed low-grade, follicular, or transformed non-hodgkin's lymphoma. J Clin Oncol. 2003;21(7):1263-1270. doi:10.1200/JCO.2003.08.043
65) Larson SM, Carrasquillo JA, Cheung NK, Press OW. Radioimmunotherapy of human tumours [published correction appears in Nat Rev Cancer. 2015 Aug;15(8):509]. Nat Rev Cancer. 2015;15(6):347-360. doi:10.1038/nrc3925
66) Akizawa H, Arano Y. Altering pharmacokinetics of radiolabeled antibodies by the interposition of metabolizable linkages: metabolizable linkers and pharmacokinetics of monoclonal antibodies. Q J Nucl Med. 2002;46:206–223.
67) Bohuslavizki KH, Brenner W, Klutmann S, et al. Radioprotection of salivary glands by amifostine in high-dose radioiodine therapy. J Nucl Med. 1998;39(7):1237-1242.
68) Krassas GE, Perros P. Thyroid disease and male reproductive function. J Endocrinol Invest. 2003;26(4):372-380. doi:0.1007/BF03345187

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.