Human Milk: Benefits, Composition and Evolution
Main Article Content
Abstract
Breastfeeding provides all the energy that the child needs in the form of nutrients in the first months of life. The components cover the nutritional needs in all stages, including colostrum and final or mature milk. It must also be taken into account that the composition of milk varies from one woman to another, between both breasts, between feedings and in the different stages in the same mother. It can be said that variation is an active mechanism to perfectly adjust to the nutritional and immunological needs of each child. Components of breast milk can exert beneficial non-nutritional functions. Breast milk also has bioactive factors, which affect biological processes and, therefore, have an impact on health. In the nutrition of premature babies, parenteral nutrition is carried out first, which later becomes enteral through different strategies, such as early minimal enteral nutrition. Despite this, they still present postnatal growth restrictions, which is associated with adverse neurocognitive outcomes. Breast milk achieves multiple benefits in both preterm and term births. Digestion and absorption in the stomach and intestines follow circadian rhythms in mammals, and these rhythms are regulated by rhythmically expressed clock genes in the intestine, as well as by daily food intake.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Brunser Tesarschü O. Advances in the knowledge about human milk proteins. Revista Chilena de Pediatria. 2018;89(2):261-269.
3. Ortega AIJ, Rodríguez-Belvis MV, Herrero JR, Peral-Suárez Á, García RMM, Bermejo LM. Controversies and errors related to nutrition and breastfeeding. Guidelines for improvement. Nutr Hosp. 2019;36(Ext3):30-34.
4. Victora CG, Rollins NC, Murch S, Krasevec J, Bahl R. Breastfeeding in the 21st century -Authors’ reply. Lancet. 2016;387(10033):2089-2090.
5. Yi-Husuan L, Ya-Chi H, Ming-Chih L, Chao-Huei C, The-Ming W. The association of macronutrients in human milk with the growth of preterm infants. Plos One. 2020; 15/(33): 0230800
6. Padilha M, Brejnrod A, Banhos N, Ho-mann C, de Melo-Iaucci J, et al. Nutrients. 2020; 12(4): 1081.
7. World Health Organization. Evidence for the Ten Steps to Successful Breastfeeding. English. 1998;23(3):1-118. http://www.babyfriendlyusa.org/eng/10steps.html
8. WHO. Global Strategy for Infant and Young Child. Glob Strateg Infant Young Child Feed. Published online 2018. ww.who.int/nutrition/publications/gs_infant_feeding_text_eng.pdf
9. Academy A, Pediatrics OF, Milk H. Breastfeeding and the use of human milk. Pediatrics. 2005;115(2):496-506.
10. Cerasani J, Ceroni F, De Cosmi V, et al. Human Milk Feeding and Preterm Infants' Growth and Body Composition: A Literature Review. Nutrients. 2020;12(4):1155.
11. Garrido M, Contador R, García-Parra J, Delgado FJ, Delgado-Adámez J, Ramírez R. Volatile profile of human milk subjected to high-pressure thermal processing. Food Res Int. 2015;78:186-194.
12. Goldman AS. Modulation of the gastrointestinal tract of infants by human milk. Interfaces and interactions. An evolutionary perspective. J Nutr. 2000;130(2S Suppl):426S-431S.
13. Calixto-González R, González-Jiménez MA, Bouchan-Valencia P, Yuriria Paredes-Vivas L, Vázquez-Rodríguez S, Cérbulo-Vázquez A, Reproducción PY, Artículo H, Revisión D. Importancia clínica de la leche materna y transferencia de células inmunológicas al neonato. Perinatología y Reproducción humana. 2011; 25(2): 109–114.
14. LeVasseur NP, Healow LK. Breastfeeding: A Guide for the Medical Profession. In Journal of Human Lactation. 1995; (Vol. 11, Issue 2).
15. Mandel D, Lubetzky R, Dollberg S, Barak S, Mimouni FB. Fat and energy contents of expressed human breast milk in prolonged lactation. Pediatrics. 2005; 116(3).
16. Roggero P, Liotto N, Braga D, Triosi J, Menis C, Gianni ML, Canani RB, Laparo L, Nocerino R, Budelli A, Mosca F, Rescigno M. Analysis of immune, microbiota and metabolome maturation in infants in a clinical trial of Lactobacillus paracasei CBA L74-fermented formula. Nat. Commun. 2020;11(1): 2703.
17. Hamosh M. Bioactive factors in human milk. Pediatric Clinics of North America. 2001;48(1):69-86.
18. Lyons K, Ryan A, Dempsey E, Ross P, Stanton C. Breast Milk, a Source of Beneficial Microbes and Associated Benefits for Infant Health. Nutrients; 2020;12(4):1039.
19. Martín E, Cabanillas J, Victoria M, Caballero P. Nutrición Hospitalaria. 2016; 33(2):232-238
20. Chirico, G.; Marzollo, R.; Cortinovis, S.; Fonte, C.; Gasparoni, A. Antiinfective Properties of Human Milk. J. Nutr. 2008;138: 1801-1806.
21. Donalisio, M.; Cirrincione, S.; Rittà, M.; Lamberti, C.; Civra, A.; Francese, R.; Tonetto, P.; Sottemano, S.; Manfredi, M.; Lorenzato, A.; et al. Extracellular Vesicles in Human Preterm Colostrum Inhibit Infection by Human Cytomegalovirus In Vitro. Microorganisms 2020; 8: 1087.
22. Sánchez CL, Narciso D, Rivero M, Sánchez S, Johnston S, Sáncez J, Barriga C, Rodriguez AB, Cubero J. Nociones en alimentación y nutrición infantil durante el primer año de vida. Enfermería Global. 2008; 12.
23. Álvarez N, Camacho F, Otero O, Acevedo R, Valdés Y, Diaz D, FariñasM, Izquierdo L, Sarmiento ME, Mohd N, Acosta A. Biodistribución de IgA secretora purificada de calostro humano en fluidos biológicos de ratón Balb/c. VacciMonitor, 2012; 21(1):14-17
24. Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatric Clinics of North America. 60(1):49-74.
25. Orczk-Pawilowicz M, Lis-Kuberka J. The Impact of Dietary Fucosylated Oligosaccharides and Glycoproteins of Human Milk on Infant Well-Being. Nutrients. 2020;12(4):1105.
26. Liao Y, Alvarado R, Phinney B, Lönnerdal B. Proteomic Characterization of Human Milk Whey Proteins during a Twelve-Month Lactation Period. Journal of Proteome Research. 2011; 10(4), 1746–1754.
27. Liu L, Oza S, Hogan D, Chu Y, Perin J, Zhu J, Lawn JE, Cousens S, Mathers C, Black RE. Global, regional, and national causes of under-5 mortality in 2000-15: an updated systematic analysis with implications for the Sustainable Development Goals. Lancet. 2016; 388(10063): 3027–3035.
28. Poindexter BB, Langer JC, Dusick AM, Ehrenkranz RA. Early provision of parenteral amino acids in extremely low birth weight infants: relation to growth and neurodevelopmental outcome. The Journal of Pediatrics. 2006; 148(3): 300–305.
29. van den Akker CHP, Vlaardingerbroek H, van Goudoever JB. Nutritional support for extremely low-birth weight infants: abandoning catabolism in the neonatal intensive care unit. Current Opinion in Clinical Nutrition and Metabolic Care. 2010; 13(3): 327–335.
30. Bhatia J, Mena P, Denne S, García C. Evaluation of adequacy of protein and energy. The Journal of Pediatrics. 2013; 162(3 Suppl): 31-6.
31. Eidelman AI, Schanler RJ. Breastfeeding and the use of human milk. Pediatrics. 2012; 129(3).
32. McCormick FM, Henderson G, Fahey T, McGuire W. Multinutrient fortification of human breast milk for preterm infants following hospital discharge. The Cochrane Database of Systematic Reviews. 2010; 7, CD004866.
33. Rasmussen KM, Geraghty SR. The quiet revolution: breastfeeding transformed with the use of breast pumps. American Journal of Public Health. 2011; 101(8), 1356–1359.
34. Chantry CJ, Wiedeman J, Buehring G, Peerson JM, Hayfron K, K’Aluoch O, Lonnerdal B, Israel-Ballard K, Coutsoudis A, Abrams, B. Effect of flash-heat treatment on antimicrobial activity of breastmilk. Breastfeeding Medicine : The Official Journal of the Academy of Breastfeeding Medicine. 2011; 6(3): 111–116.
35. Ewaschuk JB, Unger S, O’Connor DL, Stone D, Harvey S, Clandinin MT, Field CJ. Effect of pasteurization on selected immune components of donated human breast milk. Journal of Perinatology : Official Journal of the California Perinatal Association. 2011; 31(9): 593–598.
36. Macías S, Rodriguez S, Ronayne de Ferrer P. Leche materna: composición y factores condicionantes de la lactancia. Archivos Argentinos De Pediatria. 2006; 104(5): 423–430.
37. Mena NP, Milad AM. Variaciones en la composición nutricional de la leche materna. Algunos aspectos de importancia clínica . In Revista chilena de pediatría. 1998; 69: 116–121).
38. Okolo SN, Onwuanaku C, Okonji M, VanderJagt DJ, Millson M, Churchwell C, Glew RH. Concentration of eight trace minerals in milk and sera of mother-infant pairs in Northern Nigeria. Journal of Tropical Pediatrics. 2000; 46(3), 160–162.
39. Yarden Golan, Yeruda G. Assraf. Genetic and Physiological Factors Affecting Human Milk Production and Composition. Nutrientes 2020;12 (5): 1500
40. Calvo JR, Citores M. Los relojes biologicos de la alimentacion. Nutr. Hosp. 2018; 35(4): 33–38.
41. Garaulet M. La cronobiología, la alimentación y la salud. Mediterráneo Económico. 2015;27: 101–122.
42. Tahara Y, Shibata S. Chrono-biology, chrono-pharmacology, and chrono-nutrition. Journal of Pharmacological Sciences. 2014; 124(3): 320–335.
43. Garaulet M, Martinez-Nicolas A, Ruiz JR, Konstabel K, Labayen I, González-Gross M, Marcos A, Molnar D, Widhalm K, Casajús JA, De Henauw S, Kafatos A, Breidenassel C, Sjöström M, Castillo MJ, Moreno LA, Madrid JA, Ortega FB. Fragmentation of daily rhythms associates with obesity and cardiorespiratory fitness in adolescents: The HELENA study. Clinical Nutrition. 2017; 36(6): 1558–1566.
44. Damiola F, Schibler U, Gene C. A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells. Cell. 1998; 93: 929–937.
45. Sánchez López CL, Hernández A, Rodríguez AB, Rivero M, Barriga C, Cubero J. Análisis del contenido en nitrógeno y proteínas de leche materna, día vs noche. In Nutrición Hospitalaria. 2011; 26:511–514.