Empagliflozin, Beyond Glucose Reduction. The Unanticipated and Welcomed Cardioprotective Results. Switching the Heart at Four Levels: Energetic, Anatomical, Functional, and Neuro-Hormonal

Main Article Content

Morales-Villegas Enrique Castillo-Núñez Yulino Castillo-Barrios Gilberto

Abstract

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) like empagliflozin, canagliflozin, dapagliflozin, and ertugliflozin, and sotagliflozin (both a sodium-glucose cotransporter 1 inhibitor [SGLT1i] and SGLT2i), are drugs that inhibit the action of sodium-glucose cotransporters in the proximal renal tubule and/or the intestine. Therefore, causing natriuresis, glucosuria, and reduced intestinal glucose absorption. Besides this mechanism of action, which determines glycemia reduction, there are multiple extra-glycemic mechanisms in extensive research in humans in-vivo, which, beyond in-vitro or experimental studies, is dissecting the mechanisms explaining the initially unanticipated and ultimately incredibly significant and welcomed cardiac and nephroprotective results of these drugs.


This article centers on the cardioprotective effects of empagliflozin, namely, a reduction of cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, and hospitalization for heart failure, among others. These effects were demonstrated in the EMPA-REG and EMPEROR-Reduced clinical outcome trials, which will be initially summarized to later frame them in the results of the mechanistic trials EMPA-HEART, EMPIRE-HF (including sub-studies), EMPA-TROPISM, and “EMPA-PIG.” The mechanistic trials showed favorable changes in the left ventricular mass index, left ventricular end-systolic and end-diastolic volumes, extracellular and intravascular volumes, glomerular filtration rate, myocardial remodeling, among others. These were investigator-initiated studies to go beyond in-vitro and experimental evidence. The results and analysis allow us to understand myocardial energy remodeling as an intrinsic myocardial mechanism that underlies anatomical, functional, and neurohormonal myocardial remodeling. Together with other systemic actions, predominantly renal (not discussed in this article), contribute significantly to this drug's clinical benefit.

Article Details

How to Cite
ENRIQUE, Morales-Villegas; YULINO, Castillo-Núñez; GILBERTO, Castillo-Barrios. Empagliflozin, Beyond Glucose Reduction. The Unanticipated and Welcomed Cardioprotective Results. Switching the Heart at Four Levels: Energetic, Anatomical, Functional, and Neuro-Hormonal. Medical Research Archives, [S.l.], v. 9, n. 6, june 2021. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2442>. Date accessed: 26 dec. 2024. doi: https://doi.org/10.18103/mra.v9i6.2442.
Section
Research Articles

References

1. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. Zinman B, Wanner C, Lachin JM et al. N Engl J Med. 2015; 373:2117-28. DOI:10.1056/NEJMoa1504720.
2. Wanner C, Inzucchi SE, Lachin JM et al. Empagliflozin and Progression of Kidney Disease in Type 2 Diabetes. N Engl J Med. 2016; 375:323-34. DOI: 10.1056/NEJMoa1515920.
3. Packer M, Anker SD, Butler J et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. Published on August 29, 2020, at NEJM.org. DOI: 10.1056/NEJMoa2022190.
4. Neal B, Perkovic V, Mahaffey KW et al. Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes. N Engl J Med. 2017; 377:644-657.
5. Perkovic V, Jardine MJ, Neal B et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. Published online Apr 14, 2019, at NEJM.org. DOI: 10.1056/NEJMoa1811744.
6. Wiviott SD, Bonaca MP, Mosenzon O et al. Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes. N Engl J Med. Published online Nov 10, 2018 at NEJM.org. DOI: 10.1056/NEJMoa1812389.
7. McMurray JJV, Solomon SD, Inzucchi SE et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. Published online Sep 19, 2019 at NEJM.org. DOI: 10.1056/NEJMoa1911303.
8. Heerspink HJL, Stefansson VB, Correa-Rotter R et al. Dapagliflozin in Patients with Chronic Kidney Disease. N Engl J Med. Published online Sep 24, 2020 at NEJM.org. DOI: 10.1056/NEJMoa2024816.
9. Cannon CP, Pratley R, Dagogo-Jack S et al. Cardiovascular Outcomes with Ertugliflozin in Type 2 Diabetes. N Engl J Med. Published online Sep 23, 2020, at NEJM.org. DOI: 10.1056/NEJMoa2004967.
10. Bhatt DL, Szarek M, Pitt B et al. Sotagliflozin in Patients with Diabetes and Chronic Kidney Disease. N Engl J Med. Published online Nov 16, 2020, at NEJM.org. DOI: 10.1056/NEJMoa2030186.
11. Bhatt DL, Szarek M, Steg PG et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med. Published online Nov 16, 2020, at NEJM.org. DOI: 10.1056/NEJMoa2030183.
12. Cosentino F, Grant PJ et al. 2019 ESC-EASD Guidelines on Diabetes, Pre-Diabetes, and Cardiovascular Diseases Developed in Collaboration with the EASD. Eur Heart J. 2019; 00:1-69.
13. ADA Standards of Medical Care. Diabetes Care. Volume 44, Supplement 1, January 2021.
14. Inzucchi SE, Zinman B, Fitchett D et al. How Does Empagliflozin Reduce Cardiovascular Mortality? Insights From a Mediation Analysis of the EMPA-REG OTCOME trial. Diabetes Care. https://doi.org/10.2337/dc17-1096.
15. Verma S, Mazer CD, Yan AT et al. Effect of Empagliflozin on Left Ventricular Mass in Patients With Type 2 Diabetes Mellitus and Coronary Artery Disease. The EMPA-HEART Cardiolink-6 Randomized Clinical Trial. Circulation, 2019: 140:1693-1702. DOI: 10.1161/CIRCULATION AHA. 119.042375.
16. Jensen J, Omar M, Kirstop C et al. Twelve weeks of treatment with empagliflozin in patients with heart failure and reduced ejection fraction: A double-blinded, randomised, and placebo-controlled trial. Am Heart J. https://doi.org/10.1016/j.ahj.2020.07.011.
17. Omar M, Jensen J, Ali M et al. Associations of Empagliflozin With Left Ventricular Volumes, Mass and Function in Patients With Heart Failure and Reduced Ejection Fraction. A substudy of the EMPIRE HF Randomized Clinical Trial. Published online Jan 6, 2021, at JAMA Cardiol. DOI: 10.1001/jamacardio.2020.6827.
18. Jensen J, Omar M, Kirstop C et al. Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF-Renal): a prespecified substudy of a double-blinded, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. Published online Dec 2, 2020. DOI: https://doi.org/10.1016/S2213-8587(20)30382-X.
19. Omar M, Jensen J, Frederiksen PH et al. Effect of Empagliflozin on Hemodynamics in Patients With Heart Failure and Reduced Ejection Fraction. J Am Coll Cardiol. 2020; 74: 2740-51. https://doi.org/10.1016/j.acc.2020.10.005.
20. Santos-Gallego CG, Requena-Ibanez JA, San Antonio R et al. Empagliflozin Ameliorated Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics. J Am Coll Cardiol. 2019; 73:1931-44. https://doi.org/10.1016/j.ACC.2019.01.056.
21. Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA et al. Randomized Trial of Empagliflozin in Nondiabetic Patients With Heart Failure and Reduced Ejection Fraction. J Am Coll Cardiol. 2021; 77:243-55. https://.doi.org/10.1016/j.acc.2020.11.008.
22. Singh JSS, Mordi IR, Vickneson K et al. Dapagliflozin versus Placebo on Left Ventricular Remodeling in Patients with Diabetes and Heart Failure: The REFORM trial. Diabetes Care. 2020;43:1356-1359. https://doi.org/10.2337/dc19-2187
23. Nassif ME. Dapagliflozin Effects on Biomarkers, Symptoms, and Functional Status in Patients with Heart Failure with Reduced Ejection Fraction. The DEFINE-HF trial. Circulation 2019; 140:1463-1476. DOI: 10.1161/CIRCULATIONAHA.119.042929
24. Zelniker TA, Braunwald E. Mechanisms of cardiorenal effects of sodium-glucose cotransporter 2 inhibitors. JACC state-of-the-art review. J Am Coll Cardiol. 2020; 75:422-34
25. Verma S, Lopaschuck G. Mechanisms of cardiovascular benefits of sodium-glucose cotransporter 2 (sglt2) inhibitors: a state-of-the art review. J Am Coll Cardiol Basic Transl Sci. 2020; 5: 632-44
26. Chilton R, Tikkanen I, Cannon CP et al. Effects of empagliflozin on blood pressure and markers of arterial stiffness and vascular resistance in patients with type 2 diabetes. Diabetes Obes Metab. 2015; 17:1180-93
27. Garcia-Ropero A, Santos-Gallego CG, Badimon J. The anti-inflammatory effects of SGLT inhibitors. Aging (Albany NY) 2019; 11:5866-7
28. Uthman L, Baartscheer A, Bleijlevens Bet al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts inhibition of Na(+)/H(+)exchanger, lowering of cytosolic Na(+) and vasodilatation. Diabetologia. 2018; 61:722-6.
29. Yurista SR, Chong CR, Badimon J et al. Therapeutic potential of ketone bodies for patients with cardiovascular disease. J Am Coll Cardiol. In press. https://doi.org/10.1016/j.jacc.2020.12.065.
30. Mendoza-Medellín A. La importancia de la grasa para la supervivencia en el ayuno vista a través de una enzimopatía. Rev Edu Biol. 2010; 29:120-124