Point of care B mode ultrasound in Neurological Emergencies

Main Article Content

Alejandro Cardozo

Abstract

Bedside ultrasound allows diagnostic, therapeutic and monitoring approaches in critically ill patients. Currently ultrasound enables to perform a scan almost of all body regions in both adult and pediatric populations.


Head and especially central nervous system, have traditionally been excluded, based on the idea that access to the brain is not possible given the limitation of the skull, Therefore in adults, the main ultrasound applications in central nervous system assessment have been limited to the transcranial Doppler and the measurement of the optic nerve sheath as a subrogate finding of intracranial hypertension.


Nonetheless, through the temporal bone window it is possible to visualize the midline (third ventricle), nuclei basal ganglia, the mesencephalon and the lateral ventricles: the basic structures for the brain ultrasound


Although the Gold standard for the initial assessment of many neurological pathologies in the emergency department is computed tomography; the ultrasonography allows an approximation to the midline shift and acute bleeding, combined with transcranial doppler some hemodynamics estimations can be acceded, this allow the diagnosis or follow-up of increased intracranial pressure which could favor pharmacological treatments and follow the therapeutic effect.


In this review, basic B mode neurosonology for the emergency physician is explored and future directions discussed.


 

Keywords: Point of care ultrasound, B mode, Brain ultrasound, neuro emergencies

Article Details

How to Cite
CARDOZO, Alejandro. Point of care B mode ultrasound in Neurological Emergencies. Medical Research Archives, [S.l.], v. 9, n. 6, june 2021. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2443>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.18103/mra.v9i6.2443.
Section
Review Articles

References

1. Narasimhan M, Koenig SJ, Mayo PH, A Whole-Body Approach to Point of Care Ultrasound, CHEST (2016), doi: 10.1016/j.chest.2016.07.040.
2. Jacobson DJ, Shemesh I. Merging ultrasound in the intensive care routine. Isr Med Assoc J. (2013) (11):688-92.
3. Hopkins A, Doniger S. Point-of-Care Ultrasound for the Pediatric Hospitalist’s Practice. Hosp Pediatr. 2019;9(9):707-718. doi:10.1542/hpeds.2018-0118
4. Seidel G, Kaps M, Gerriets T. Potential and Limitations of Transcranial Color-Coded Sonography in Stroke Patients. Stroke. 1995;26(11):2061-2066. doi:10.1161/01.str.26.11.2061
5. Tsivgoulis G, Alexandrov A. Ultrasound in Neurology. CONTINUUM: Lifelong Learning in Neurology. 2016;22(5):1655-1677. doi:10.1212/con.0000000000000374
6. Hylkema C. Optic Nerve Sheath Diameter Ultrasound and the Diagnosis of Increased Intracranial Pressure. Crit Care Nurs Clin North Am. 2016;28(1):95-99. doi:10.1016/j.cnc.2015.10.005
7. Ohle R, McIsaac S, Woo M, Perry J. Sonography of the Optic Nerve Sheath Diameter for Detection of Raised Intracranial Pressure Compared to Computed Tomography. Journal of Ultrasound in Medicine. 2015;34(7):1285-1294. doi:10.7863/ultra.34.7.1285
8. Panneerselvam T, Mathews A, Cattamanchi S, Trichur R. Evaluation of bedside sonographic measurement of optic nerve sheath diameter for assessment of raised intracranial pressure in adult head trauma patients. J Emerg Trauma Shock. 2020;13(3):190. doi:10.4103/jets.jets_94_19
9. Llorens-Salvador R, Moreno-Flores A. El ABC de la ecografía transfontanelar y más. Radiología. 2016;58:129-141. doi:10.1016/j.rx.2016.02.007
10. Bendella H, Spreer J, Hartmann A et al. Bedside Sonographic Duplex Technique as a Monitoring Tool in Patients after Decompressive Craniectomy: A Single Centre Experience. Medicina (B Aires). 2020;56(2):85. doi:10.3390/medicina56020085
11. Seidel G, Gerriets T, Kaps M, Missler U. Dislocation of the third ventricle due to space-occupying stroke evaluated by transcranial duplex sonography. J Neuroimaging. 1996;6(4):227-230. doi:10.1111/jon199664227
12. Seidel G, Kaps M, Gerriets T, Hutzelmann A. Evaluation of the ventricular system in adults by transcranial duplex sonography. J Neuroimaging. 1995;5(2):105-108. doi:10.1111/jon199552105
13. Gerriets T, Stolz E, Modrau B, Fiss I, Seidel G, Kaps M. Sonographic monitoring of midline shift in hemispheric infarctions. Neurology. 1999;52(1):45-49. doi:10.1212/wnl.52.1.45
14. Gerriets T, Stolz E, König S, et al. Sonographic monitoring of midline shift in space-occupying stroke: an early outcome predictor. Stroke. 2001;32(2):442-447. doi:10.1161/01.str.32.2.442
15. Tang SC, Huang SJ, Jeng JS, Yip PK. Third ventricle midline shift due to spontaneous supratentorial intracerebral hemorrhage evaluated by transcranial color-coded sonography. J Ultrasound Med. 2006;25(2):203-209. doi:10.7863/jum.2006.25.2.203
16. Seidel G, Kaps M, Dorndorf W. Transcranial color-coded duplex sonography of intracerebral hematomas in adults. Stroke. 1993;24(10):1519-1527. doi:10.1161/01.str.24.10.1519
17. Kaps M, Seidel G, Gerriets T, Traupe H. Transcranial duplex monitoring discloses hemorrhagic complication following rt-PA thrombolysis. Acta Neurol Scand. 1996;93(1):61-63. doi:10.1111/j.1600-0404.1996.tb00172.x
18. Seidel G, Cangür H, Albers T, Meyer-Wiethe K. Transcranial sonographic monitoring of hemorrhagic transformation in patients with acute middle cerebral artery infarction. J Neuroimaging. 2005;15(4):326-330. doi:10.1177/1051228405280174.
19. Niesen WD, Burkhardt D, Hoeltje J, Rosenkranz M, Weiller C, Sliwka U. Transcranial grey-scale sonography of subdural haematoma in adults. Ultraschall Med. 2006;27(3):251-255. doi:10.1055/s-2006-926544
20. Blanco P, Matteoda M. Images in emergency medicine. Extra-axial intracranial hematoma, midline shift, and severe intracranial hypertension detected by transcranial color-coded duplex sonography. Ann Emerg Med. 2015;65(2):e1-e2. doi:10.1016/j.annemergmed.2014.08.042
21. Pérez ES, Delgado-Mederos R, Rubiera M, et al. Transcranial duplex sonography for monitoring hyperacute intracerebral hemorrhage. Stroke. 2009;40(3):987-990. doi:10.1161/STROKEAHA.108.524249
22. Matsumoto N, Kimura K, Iguchi Y, Aoki J. Evaluation of cerebral hemorrhage volume using transcranial color-coded duplex sonography. J Neuroimaging. 2011;21(4):355-358. doi:10.1111/j.1552-6569.2010.00559.x
23. Abadal JM, Llompart-Pou JA, Homar J, Pérez-Bárcena J, Ibáñez J. Aplicaciones del dúplex transcraneal codificado en color en la monitorización del enfermo neurocrítico [Applications of transcranial color-coded duplex sonography in monitoring neurocritical patients]. Med Intensiva. 2007;31(9):510-517. doi:10.1016/s0210-5691(07)74858-1
24. Lochner P, Czosnyka M, Naldi A, et al. Optic nerve sheath diameter: present and future perspectives for neurologists and critical care physicians. Neurol Sci. 2019;40(12):2447-2457. doi:10.1007/s10072-019-04015-x
25. Shrestha GS, Upadhyay B, Shahi A, Jaya Ram KC, Joshi P, Poudyal BS. Sonographic Measurement of Optic Nerve Sheath Diameter: How Steep is the Learning Curve for a Novice Operator?. Indian J Crit Care Med. 2018;22(9):646-649. doi:10.4103/ijccm.IJCCM_104_18
26. Lochner P, Coppo L, Cantello R, et al. Intra- and interobserver reliability of transorbital sonographic assessment of the optic nerve sheath diameter and optic nerve diameter in healthy adults. J Ultrasound. 2014;19(1):41-45. Published 2014 Nov 20. doi:10.1007/s40477-014-0144-z
27. Qayyum H, Ramlakhan S. Can ocular ultrasound predict intracranial hypertension? A pilot diagnostic accuracy evaluation in a UK emergency department. Eur J Emerg Med. 2013;20(2):91-97. doi:10.1097/MEJ.0b013e32835105c8
28. Builes SV, Gonzalez VG, Cardozo A. Using point-of-care ultrasound in ocular emergencies: A mini review. J Acute Dis 2020; 9(5): 190-193.
29. Ochoa-Pérez L, Cardozo-Ocampo A. Ultrasound applications in the central nervous system for neuroanaesthesia and neurocritical care. Rev Colomb Anestesiol. 2015;43:314–320
30. Lee SH, Kim HS, Yun SJ. Optic nerve sheath diameter measurement for predicting raised intracranial pressure in adult patients with severe traumatic brain injury: A meta-analysis. J Crit Care. 2020;56:182-187. doi:10.1016/j.jcrc.2020.01.006
31. Koziarz A, Sne N, Kegel F, et al. Bedside Optic Nerve Ultrasonography for Diagnosing Increased Intracranial Pressure: A Systematic Review and Meta-analysis. Ann Intern Med. 2019;171(12):896-905. doi:10.7326/M19-0812
32. Kim SE, Hong EP, Kim HC, Lee SU, Jeon JP. Ultrasonographic optic nerve sheath diameter to detect increased intracranial pressure in adults: a meta-analysis. Acta Radiol. 2019;60(2):221-229. doi:10.1177/0284185118776501
33. Lee SU, Jeon JP, Lee H, et al. Optic nerve sheath diameter threshold by ocular ultrasonography for detection of increased intracranial pressure in Korean adult patients with brain lesions. Medicine (Baltimore). 2016;95(41):e5061. doi:10.1097/MD.0000000000005061
34. Robba C, Cardim D, Tajsic T, et al. Non-invasive Intracranial Pressure Assessment in Brain Injured Patients Using Ultrasound-Based Methods. Acta Neurochir Suppl. 2018;126:69-73. doi:10.1007/978-3-319-65798-1_15
35. Kaps M, Seidel G, Gerriets T, Traupe H. Transcranial duplex monitoring discloses hemorrhagic complication following rt-PA thrombolysis. Acta Neurol Scand. 1996;93(1):61-63. doi:10.1111/j.1600-0404.1996.tb00172.x
36. Niesen WD, Rosenkranz M, Weiller C. Bedsided Transcranial Sonographic Monitoring for Expansion and Progression of Subdural Hematoma Compared to Computed Tomography. Front Neurol. 2018;9:374. Published 2018 May 28. doi:10.3389/fneur.2018.00374
37. Stead GA, Cresswell FV, Jjunju S, Oanh PKN, Thwaites GE, Donovan J. The role of optic nerve sheath diameter ultrasound in brain infection. eNeurologicalSci. 2021;23:100330. Published 2021 Feb 22. doi:10.1016/j.ensci.2021.100330
38. Donovan J, Oanh PKN, Dobbs N, et al. Optic nerve sheath ultrasound for the detection and monitoring of raised intracranial pressure in tuberculous meningitis [published online ahead of print, 2020 Dec 7]. Clin Infect Dis. 2020;ciaa1823. doi:10.1093/cid/ciaa1823
39. Horstmann S, Koziol JA, Martinez-Torres F, Nagel S, Gardner H, Wagner S. Sonographic monitoring of mass effect in stroke patients treated with hypothermia. Correlation with intracranial pressure and matrix metalloproteinase 2 and 9 expression. J Neurol Sci. 2009;276(1-2):75-78. doi:10.1016/j.jns.2008.08.038
40. Güzeldağ S, Yılmaz G, Tuna M, Altuntaş M, Özdemir M. Measuring the Optic Nerve Sheath Diameter with Ultrasound in Acute Middle Cerebral Artery Stroke Patients. J Stroke Cerebrovasc Dis. 2021;30(2):105523. doi:10.1016/j.jstrokecerebrovasdis.2020.105523
41. Thotakura AK, Marabathina NR, Danaboyina AR, Mareddy RR. Role of serial ultrasonic optic nerve sheath diameter monitoring in head injury. Neurochirurgie. 2017;63(6):444-448. doi:10.1016/j.neuchi.2017.06.001
42. Camps-Renom P, Méndez J, Granell E, et al. Transcranial Duplex Sonography Predicts Outcome following an Intracerebral Hemorrhage. AJNR Am J Neuroradiol. 2017;38(8):1543-1549. doi:10.3174/ajnr.A5248
43. Kiphuth IC, Huttner HB, Breuer L, Schwab S, Köhrmann M. Sonographic monitoring of midline shift predicts outcome after intracerebral hemorrhage. Cerebrovasc Dis. 2012;34(4):297-304. doi:10.1159/000343224
44. Yang WS, Li Q, Li R, et al. Defining the Optimal Midline Shift Threshold to Predict Poor Outcome in Patients with Supratentorial Spontaneous Intracerebral Hemorrhage. Neurocrit Care. 2018;28(3):314-321. doi:10.1007/s12028-017-0483-7
45. Lee SH, Jong Yun S. Diagnostic performance of optic nerve sheath diameter for predicting neurologic outcome in post-cardiac arrest patients: A systematic review and meta-analysis. Resuscitation. 2019;138:59-67. doi:10.1016/j.resuscitation.2019.03.004
46. Caballero-Lozada AF, Nanwani KL, Pavón F, Zorrilla-Vaca A, Zorrilla-Vaca C. Clinical Applications of Ultrasonography in Neurocritically Ill Patients [published online ahead of print, 2020 Mar 10]. J Intensive Care Med. 2020;885066620905796. doi:10.1177/0885066620905796
47. Bertuetti R, Gritti P, Pelosi P, Robba C. How to use cerebral ultrasound in the ICU. Minerva Anestesiol. 2020;86(3):327-340. doi:10.23736/S0375-9393.19.13852-7
48. Robba C, Goffi A, Geeraerts T, et al. Brain ultrasonography: methodology, basic and advanced principles and clinical applications. A narrative review. Intensive Care Med. 2019;45(7):913-927. doi:10.1007/s00134-019-05610-4
49. Lau VI, Arntfield RT. Point-of-care transcranial Doppler by intensivists. Crit Ultrasound J. 2017;9(1):21. Published 2017 Oct 13. doi:10.1186/s13089-017-0077-9

50. Robba C, Poole D, Citerio G, Taccone FS, Rasulo FA; Consensus on brain ultrasonography in critical care group. Brain Ultrasonography Consensus on Skill Recommendations and Competence Levels Within the Critical Care Setting. Neurocrit Care. 2020;32(2):502-511. doi:10.1007/s12028-019-00766-9
51. Sallam A, Abdelaal Ahmed Mahmoud M Alkhatip A, Kamel MG, et al. The Diagnostic Accuracy of Noninvasive Methods to Measure the Intracranial Pressure: A Systematic Review and Meta-analysis. Anesth Analg. 2021;132(3):686-695. doi:10.1213/ANE.0000000000005189
52. Ohle R, McIsaac SM, Woo MY, Perry JJ. Sonography of the Optic Nerve Sheath Diameter for Detection of Raised Intracranial Pressure Compared to Computed Tomography: A Systematic Review and Meta-analysis. J Ultrasound Med. 2015;34(7):1285-1294. doi:10.7863/ultra.34.7.1285
53. Calle-Morales MI, Duque C, Moreira M et Al. Guías para el entrenamiento en ultrasonido de emergencias. REV ARG DE ULTRASONIDO2013; 12( 2): 86-98
54. Ultrasound Guidelines: Emergency, Point-of-Care and Clinical Ultrasound Guidelines in Medicine. Ann Emerg Med. 2017;69(5):e27-e54. doi:10.1016/j.annemergmed.2016.08.457
55. Kukulska-Pawluczuk B, Książkiewicz B, Nowaczewska M. Imaging of spontaneous intracerebral hemorrhages by means of transcranial color-coded sonography. Eur J Radiol. 2012;81(6):1253-1258. doi:10.1016/j.ejrad.2011.02.066
56. Llompart Pou JA, Abadal Centellas JM, Palmer Sans M, et al. Monitoring midline shift by transcranial color-coded sonography in traumatic brain injury. A comparison with cranial computerized tomography. Intensive Care Med. 2004;30(8):1672-1675. doi:10.1007/s00134-004-2348-8