Platelet Activating Factor Receptor Binding and Contractile Protein Expression by Ovine Fetal Pulmonary Vascular Smooth Muscle Cells: Role in Rho Kinase Mediation of PAF Receptor-Linked Physiological Responses

Main Article Content

Basil O. Ibe Amy M. Douglass Stephen M Douglass Lissette S. Renteria


We studied effects of hypoxia and some modulators of PAFR–mediated signaling in fetal ovine arterial and venous smooth muscle cells to aid in explaining PAF regulation of fetal pulmonary hemodynamics in utero. PAFR, a G protein coupled receptor, is characteristically measured in membrane proteins. Profile of binding to soluble and nuclear fraction proteins from SMC have not been studied. Rho kinase (ROCK) inhibitors decrease PAFR-linked smooth muscle growth, suggesting that PAFR internalization may not be only the pathway to downregulate PAFR-mediated responses. We hypothesized that PAF binds to SMC subcellular protein fractions and together with ROCK contributes to physiological effects of PAF. Protein fractions were prepared from cells cultured in normoxia or hypoxia. PAF binding, PAFR protein and gene expression were studied. In normoxia, PAFR density (Bmax) in arterial and venous SMC were 487±37 and 624±17 respectively, which increased by 30-35% in hypoxia, and was greater in venous than arterial SMC in normoxia and hypoxia. The KD for PAFR binding to arterial cells was higher than for venous, and then hypoxia decreased the KD of PAFR binding in both cell types. PAFR binding to subcellular fractions were detectable, but were significantly lower than for membrane fractions in all conditions; e.g., normoxia: venous versus membrane, soluble fraction, 40%; nuclear fraction, 20%. ROCK inhibitor (Y-27632) attenuated PAFR binding after 24 hr incubation comparable to effects of cycloheximide and CV-3988. Unlike CV-3988, Y-27632 had no effect on PAF binding to pre-synthesized receptors within 30 min incubation. Y-27632 and HA-1077 increased MLCK and Calponin expression, although oxygen-related effects in venous SMC were different. PAFR gene expression was higher in hypoxia and effect of PAF and CV-3988 treatment on gene expression was paradoxically higher in arterial SMC supporting a translational control of PAFR activity in lung SMC. This study shows that PAFR binding to the SMC is not exclusive to membranes and that hypoxia in conjunction with ROCK modulate PAFR-mediated signaling in pulmonary vascular SMC in vitro with different effects on cells from arteries and veins. Different effects of ROCK on contractile proteins expression in hypoxia suggest involvement of these proteins in PAF-induced lung SMC reactivity in utero.

Keywords: PAF receptor, Protein fractions, hypoxia, Rho kinase, MLCK, Calponin

Article Details

How to Cite
IBE, Basil O. et al. Platelet Activating Factor Receptor Binding and Contractile Protein Expression by Ovine Fetal Pulmonary Vascular Smooth Muscle Cells: Role in Rho Kinase Mediation of PAF Receptor-Linked Physiological Responses. Medical Research Archives, [S.l.], v. 9, n. 7, july 2021. ISSN 2375-1924. Available at: <>. Date accessed: 04 june 2023. doi:
Research Articles


1. Argiolas L, Fabi F, del Basso P. Mechanisms of pulmonary vasoconstriction and bronchoconstriction produced by PAF in guinea-pig: role of platelets and cyclo-oxygenase metabolites. Br J Pharmacol. 1995;114: 203-209. doi: 10.1111/j.1476-5381.1995.tb14926.x. PMID: 7712019
2. Gao Y, Zhou H, Raj JU. PAF induces relaxation of pulmonary arteries but contraction of pulmonary veins in the ferret. Am J Physiol Heart Circ Physiol. 1995;269: H704-H709. doi: 10.1152/ajpheart.1995.269.2.H704.PMID: 7653635
3. Ibe BO, Hibler S, Raj JU. Platelet-activating factor modulates pulmonary vasomotor tone in the perinatal lamb. J Appl Physiol. 1998;85: 1079-1085. DOI: 10.1152/jappl.1998.85.3.1079. PMID: 9729586.
4. Raj JU, Toga H, Ibe BO, Anderson J. Effects of endothelin, platelet activating factor and thromboxane A2 in ferret lungs. Respir Physiol. 1992;88: 129-140. doi: 10.1016/0034-5687(92)90034-t. PMID: 1626132
5. Toga H, Hibler S, Ibe BO, Raj JU. Vascular effects of platelet-activating factor in lambs: role of cyclo- and lipoxygenase. J Appl Physiol. 1992;73: 2559-2566. doi: 10.1152/jappl.1992.73.6.2559. PMID: 1490969
6. Bixby CE, Ibe BO, Abdallah MF, Zhou W, Hislop AA, Longo LD, Raj JU. Role of platelet-activating factor in pulmonary vascular remodeling associated with chronic high altitude hypoxia in ovine fetal lambs. Am J Physiol Lung Cell Mol Physiol 2007;293: L1475-L1482. Doi: 10.1152/ajplung.00089.2007.
7. Ono S, Westcott JY, and Voelkel NF. PAF antagonists inhibit pulmonary vascular remodeling induced by hypobaric hypoxia in rats. J Appl Physiol. 1992;73: 1084-1092. doi: 10.1152/jappl.1992.73.3.1084. PMID: 1400021
8. Hanouni M, Bernal G, Shaemion S, Narvaez VRF, Ibe BO. Hypoxia and hyperoxia potentiate PAF receptor-mediated effects in newborn ovine pulmonary arterial smooth muscle cells: significance in oxygen therapy of PPHN Physiol Rep. 2016; 4: 1-18. doi: 10.14814/phy2.1284. PMID: 27354543
9. Gao Y, Raj JU. Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev 90: 1291-1335, 2010. doi: 10.1152/physrev.00032.2009. PMID: 20959617
10. Parent J-L, Le Gouill C, Escher E, Rola-Pleszcynski M, Stankova J. Identification of transmembrane domain residues determinant in the structure-function relationship of human platelet-activating factor receptor by site directed mutagenesis. J Biol Chem. 1996;271: 23298-23303. doi: 10.1074/jbc.271.38.23298. PMID: 8798529
11. Witzenrath M, Gitbier B, Owen JS, Schmeck B, Mitchell TJ, Mayer K, Thomas MJ, Ishii S, Rosseau S, Suttorp N Schutte H. Role of platelet-activating factor in pneumolysin-induced acute lung injury. Crit Care Med. 2007;7: 1756-1762. doi: 10.1097/01.CCM.0000269212.84709.23. PMID: 17522574
12. Madden JA, Dantuma MW, Sorokin EA, Weihrauch D, Kleinman JG. Telokin expression and the effect of hypoxia on its phosphorylation status in smooth muscle cells from small and large pulmonary arteries. Am Jo Physiol lung Cell Mol Physiol. 2008;294, L1166-L1173. doi 10.1152/ajplung.00375.2007. PMID:
13. Martin C, Göggle R, Ressmeyer A-R, Uhlig S. Pressor responses to platelet-activating factor and thromboxane are mediated by Rho-kinase. Am J Physiol Lung Cell Mol Physiol. 2004;287: L250-L257. DOI: 10.1152/ajplung.00420.2003 PMID: 15064228
14. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002;Dec 12;420: 629-635. doi: 10.1038/nature01148. PMID: 12478284.
15. Ward JPT, McMurtry IF. Mechanisms of hypoxic pulmonary vasoconstriction and their roles in pulmonary hypertension: new findings for an old problem. Curr Opin Pharmacol. 2009, June;9: 287-296. doi: 10.1016/j.coph.2009.02.006. PMID: 19297247
16. Renteria LS, Austin M, Lazaro M, Andrews MA, Lustina J, Raj JU, Ibe B. RhoA- Rho kinase and platelet-activating factor stimulation of ovine foetal pulmonary vascular vascular smooth muscle cell proliferation. Cell Prolif. 2013;46: 563-575. Doi: 10.1111/cpe.12052, PMID: 24033386.
17. Beqaj S, Jakkaraju S, Mattingly RR, Pan Desi, Schuger L. High RhoA activity maintains the undifferentiated mesenchymal cell phenotype, whereas RhoA down-regulation by laminin-2 induces smooth muscle myogenesis. J Cell Biol. 2002 Mar 4;156: 893-903. doi: 10.1083/jcb.200107049. Epub 2002 Mar 4. PMID: 11877460
18. Alvira CM, Sukovich DJ, Lyu S-C, Cornfield DN. Rho kinase modulates postnatal adaptation of the pulmonary circulation through separate effects on pulmonary artery and smooth muscle cells. Am J Physiol Lung Cell Mol Physiol. 2010;299: L872-L878. doi: 10.1152/ajplung.00199.2010. PMID: 20709731
19. Fagan KA, Oka M, Bauer NR, Gebb SA, Ivy DD, Morris KG, McMurtry IF. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho-kinase. Am J Physiol Lung Cell Mol Physiol. 2004;287: L656-664. doi: 10.1152/ajpheart.00394.2002. PMID: 14977625
20. Patil SB, Bitar KN. RhoA- and PKC-α-mediated phosphorylation of MYPT and its association with HSP27 in colonic smooth muscle cells. Am J Physiol Gastrointest Liver Physiol. 2006 Jan;290: G83-95. doi: 10.1152/ajpgi.00178.2005. Epub 2005 Sep 22. PMID: 16179599
21. Ibe BO, Portugal AM, Chaturvedi S, Raj JU. Oxygen-dependent PAF receptor binding and intracellular signaling in ovine fatal pulmonary vascular smooth muscle. Am J Physiol Lung Cell Mol Physiol 2005; 288:L879-886. Doi: 10.1152/ajplung.00341.2004 PMID: 15618453.
22. Ibe BO, Portugal AM, Raj JU. Metabolism of platelet activating factor by intrapulmonary vascular smooth cells. Effect of oxygen on phospholipase A2 protein expression and activities of acetyl-CoA acetyltransferase and cholinephosphotransferase. Mol Genet Metab. 2002 Nov;77: 237-248. doi: 10.1016/s1096-7192(02)00147-6. PMID: 12409272
23. Ibe BO, Sander FC, Raj JU. Platelet-activating factor receptors in lamb lungs are downregulated immediately after birth. Am J Physiol Heart Circ Physiol. 2000;278: H1168-H1176. Doi: 10. 1152/ajpheart.2000.278-4.H1168. PMID: 10749711.
24. Braquet P, Rola-Pleszczynski M. The role of PAF in immunological responses: a review. Prostaglandins. 1987 Aug;34(2):143-148. doi: 10.1016/0090-6980(87)90190-0. PMID: 3313527
25. Dupré DJ, Rola-Pleszczynski M, Stankova J. Rescue of internalization-defective platelet-activating factor receptor function by EBP50/NHERF1. J Cell Commun Signal. 2012; 6:205-215. Doi 10. 1007/s12079-012-0175-1. PMID: 22878922.
26. Zimmerman B, Simaan M, Lee M-H, Luttrell LM, Laporte SA. C-Src-mediated phosphorylation of AP-2 reveals a general mechanism for receptors internalizing through the clathrin pathway. Cell Signal. 2009;21: 103-110. Doi: 10. 1016/j.cellig.2008.09.013 PMID: 18938240.
27. Bhosle VK, Rivera JC, Zhou T (Ellen), Omri S, Sanchez M, Hamel D, Zhu T, Rouget R, Al Rabea A, Hou X, Lahaie I, Ribeiro-da-Silva A, Chemtob S. Nuclear localization of platelet-activating factor receptor controls retinal neovascularization. Cell Discovery. 2016;2: 16017. Doi: 10.1038/celldisc.2016.17. PMID: 27462464
28. Jobe AH, Polk DH, Ervin MG, Padbury JF, Rebello, CM, Ikegami M. Preterm betamethasone treatment of fetal sheep: outcome after term delivery. J Soc Gynecol Investig. 1996;3(5): 250-258. Doi: 10.1016/s1071-5576(96)00029-9. PMID: 8796837.
29. Bland RD. Neonatal chronic lung disease in post-surfactant era. Biol Neonate. 2005;88(3): 181-191. Doi: 10.1159/000087581. PMID: 16210840.
30. Sehgal A, Allison BJ, Miller SL, Polglase GR, McNamara PJ, Hooper SB. Impact of acute and chronic hypoxia-ischemia on the transitional circulation. Pediatrics. 2021; 147(3):e2020016972. Doi: 10.1542/peds.2020-016972. PMID: 33622795.
31. Abman SH. Recent advances in the pathogenesis and treatment of persistent pulmonary hypertension of the newborn. Neonatology. 2007;94(4): 283-290. Doi: 10. 1159/000101343. PMID: 17575471.
32. Kemp MW, Jobe AH, Usuda H, Nathanielsz PW, Cun L, Kuo A, Huber HF, Clarke GD, Saito M, Newnham JP, Stock SJ. Efficacy and safety of antenatal steroids. Am J Physiol Regul Integr Comp Physiol. 2018; 315(4); R825-R839. Doi: 10. 1152/ajpregu.00193.2017. PMID: 29641233.
33. Kemp MW, Saito M, Usuda H, Molloy TJ, Miura Y, Sato Sato S, Watanabe S, Clarke M, Fossler M, Scmidt A, Kallpur SG, Kramer BW, Newnham JP, Jobe AH. Maternofetal pharmacokinetics and fetal lung responses in chronically catheterized sheep receiving constant, low-dose infusions of betamethasone phosphate. Am J Obstet Gynecol. 2016 Dec; 215(6): 775.e1-775.e12. doi: 10. 1016/j.ajog.2016.08.017. PMID: 27555319.
34. Schrauben EM, Saini BS, Darby JRT, Soo JY, Lock MC, Stirrat E, Stortz G, Sled JG, Morrison JL, Seed M, Macgowan CK. J Cardiovasc Magn Reson. 2019 Jan 21:21(1):8. Doi: 10. 1186/s12968-018-0512-5. PMID: 30661506.
35. Chabrier PE. Growth factors and vascular wall. Int Angiol.1996;15: 100-1003. PMID: 8803632
36. McManus LM, Pinckard RN. PAF, a putative mediator of oral inflammation. Crit Rev Oral Biol Med. 2000;11: 240-258. doi: 10.1177/10454411000110020701. PMID: 12002818
37. Accurso FJ, Abman SH, Wilkinging RB, Worthen GS, Hanson P. Fetal pulmonary vasodilation after exogenous platelet-activating factor. J Appl Physiol. 1991;70: 778-787. doi: 10.1152/jappl.1991.70.2.778. PMID: 2022570.
38. Burhop KE, Van de Zee H, Bizios R, Kaplan JE, Malik AB. Pulmonary vascular responses to platelet-activating factor in awake sheep and the role of cyclooxygenase metabolites. Am Rev Respir Dis. 1986 Sep;143: 548-554. doi: 10.1164/arrd.1986.134.3.548. PMID: 3752711.
39. Basil O Ibe, Adnan Ameer, Ada Mae Portugal, Lissette Renteria, J Usha Raj. Platelet-activating factor modulates activity of cyclic nucleotides in fetal ovine pulmonary vascular smooth muscle. J Pharmacol Exp Ther. 2007 Feb;320(2):728-737. doi: 10.1124/jpet.106.111914. PMID: 17085546.
40. Laduron PM. Criteria for receptor sites in binding studies. Biochem Pharmacol. 1984 Mar 15;33(6):897-903. doi: 10.1016/0006-2952(84)90443-x. PMID: 6201175
41. Chao W and Olson MS. Platelet-activating factor: receptors and signal transduction. Biochem J. 1993 Jun 15;292 ( Pt 3)(Pt 3):617-629. doi: 10.1042/bj2920617. PMID: 8391253.
42. Chen J, Ziboh V, and Giri SN. Up-regulation of platelet-activating factor in lung, and alveolar macrophages in bleomycin-hamster model of pulmonary fibrosis. J Pharmacol Exp Ther. 1997 Mar;280(3):1219-1227. PMID: 9067307
43. Burgers JA, Bruynzeel PLB, Mengeler HJJ Kreukniet J, Akkerman J-WN. Occupancy of platelet receptors for platelet activating factor in asthmatic patients during an allergen-induced bronchoconstrictive reaction. J Lipid Mediat. 1993 Jun;7(2): 135-149. PMID: 8400115
44. Chang W, Chen J, Schlueter CF, Hoyle GW. Common pathways for activation of proinflammatory gene expression by G protein‐coupled receptors in primary lung epithelial and endothelial cells. Exp. Lung Res. 2009;35: 324–343. Doi: PMID: 19415549.
45. Ibe BO, Abdallah MF, Portugal AM, Raj JU. Platelet‐activating factor stimulates ovine foetal pulmonary vascular smooth muscle cell proliferation. Role of nuclear factor‐kappa B and cyclin‐dependent kinases. Cell Prolif. 2008;41: 208–229. DOI: 10.1111/j.1365-2184.2008.00517.x PMID: 18336468.
46. Patil SB, Bitar KN RhoA‐ and PKC‐α‐mediated phosphorylation of MYPT and its association with HSP27 in colonic smooth muscle cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2006;290: G83–G95. DOI: 10.1152/ajpgi.00178.2005 PMID: 16179599
47. Fagan KA, Oka M, Bauer NR, Gebb SA, Ivy DD, Morris G et al. Attenuation of acute hypoxic pulmonary vasoconstriction and hypoxic pulmonary hypertension in mice by inhibition of Rho‐kinase. Am. J. Physiol. Lung Cell. Mol. Physiol. 2004;287: L656–L664. DOI: 10.1152/ajplung.00090.2003. PMID: 14977625.
48. Parker TA, Roe G, Grover TR, Abman SH. Rho kinase activation maintains high pulmonary vascular resistance in the ovine fetal lung. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006:291, L976–L982. DOI: 10.1152/ajplung.00512.2005 PMID: 16815887
49. Carlson SA, Chatterjee TK, Fisher RA (1996) The third intracellular domain of the platelet‐activating factor receptor is critical determinant in the receptor coupling to phosphoinositide phospholipase C activating G proteins. J. Biol. Chem. 1996;272: 23146–23153. DOI: 10.1074/jbc.271.38.23146. PMID: 8798508.
50. Satav J G, Katyare S S, Fatterparker P, Sreenivasan A. Study of protein synthesis in rat liver mitochondria use of cycloheximide. Eur J Biochem. 1977; 73: 287-96. doi: 10.1111/j.1432-1033.1977.tb11318.x. PMID: 837942
51. Gordon RY, Mugantseva EA, Khutzian SS, Podolski IY. Cycloheximide-induced inhibition of protein synthesis in hippocampal pyramidal neurons is time-dependent: differences between CA1 and CA3 areas. Neurosci Lett. 2009;461: 249-251. doi: 10.1016/j.neulet.2009.06.042. PMID: 19545598.
52. Lafarga M, Berciano MT, Andres MA, Testillano PE. Effects of cycloheximide on the structural organization of the nucleolus and the coiled body in normal and stimulated supraoptic neurons of the rat. J Neurocytol. 1994;23: 500-513. doi: 10.1007/BF01184073. PMID: 7983476
53. Lafarga M, Martinez-Guijarro FJ, Berciano MT, Blasco-Ibañez JM, Andres MA, Mellström B, Lopez-Garcia BC, Naranjo JR. Nuclear Fos domains in transcriptionally activated supraoptic nucleus neurons. Neuroscience. 1993;57: 353-564. doi: 10.1016/0306-4522(93)90068-q. PMID: 8115044.
54. Agrawal V, Jaiswal MK, Ilievski V, Beaman KD, Jilling T, Hirsch E. Platelet-activating factor: a role in preterm delivery and an essential interaction with Toll-like receptor signaling in mice. Biol Reprod. 2014;91: 119. doi: 10.1095/biolreprod.113.116012. PMID: 25253732
55. V Boulom, H-W Lee, L Zhao, M Eghbali-Webb. Stimulation of DNA synthesis, activation of mitogen-activated protein kinase ERK2 and nuclear accumulation of c-fos in human aortic smooth muscle cells by ketamine. Cell Prolif. 2002;35: 155-165. doi: 10.1046/j.1365-2184.2002.00233.x. PMID: 12027951.
56. Gupta MK, Mohan ML, Prasad SVN. G-protein-coupled receptor resensitization paradigms. Int Rev Cell Mol Biol. 2018;339: 63-91. Doi: 10.1016/bs.rcmb.2018.03.002. PMID: 29776605.
57. Kliewer A, Reinscheid RK, Schulz S. Emerging Paradigms of G Protein-Coupled Receptor Dephosphorylation. Trends Pharmacol Sci. 2017;38: 621-636. doi: 10.1016/ PMID: 28478994.
58. Calebiro D, Godbole A. Internalization of G-protein-coupled receptors: Implication in receptor function, physiology and diseases. Best Pract Res Clin Endocrinol Metab. 2018;32: 83-91. doi: 10.1016/j.beem.2018.01.004. PMID: 29678288.
59. Weis W, Kobilka BK. The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem. 2018; 87: 897-919. Doi: 10.1146/annurev-biochem-060614-033910. PMID: 29925258.
60. Nagaoka T, Fagan KA, Gebb SA, Morris KG, Suzuki T, Shimokawa H, McMurtry IF, Oka M. Inhaled Rho kinase inhibitors are potent and selective vasodilators in rat pulmonary hypertension. Am J Respir Crit Care Med. 2005;171: 494-499. DOI: 10.1164/rccm.200405-637OC. PMID: 15563635.
61. Somlyo AP, Wu X, Walker LA Somlyo AV. Pharmacomechanical coupling: the role of calcium, G-proteins, kinases and phosphatases. Rev Physiol Biochem Pharmacol 1999;130: 201-234. doi: 10.1007/3-540-64753-8_5. PMID: 10087910.
62. Badejo AM, Dhaliwal JS, Casey DB, Gallen TB, Greco AJ, Kadowitz PJ. Analysis of pulmonary vasodilator responses to the Rho-kinase inhibitor fasudil in the anesthetized rat. Am J Physiol Lung Cell Mol Physiol 2008;295: L828-L836. doi: 10.1152/ajplung.00042.2008. Epub 2008 PMID: 18689606.
63. Le Gouill C, Parent JL, Rola-Pleszczynski M, Stanková J. Structural and functional requirements for agonist-induced internalization of the human platelet-activating factor receptor. J Biol Chem. 1997;272: 21289-21295. doi: 10.1074/jbc.272.34.21289. PMID: 9261140.
64. Gao Y, Ye LH, Kishi H, Okagaki T, Samizo K, Nakamura A, Kohama K. Myosin light chain kinase as a multifunctional regulatory protein of smooth muscle contraction IUBMB Life. 2001;51:337-344. doi: 10.1080/152165401753366087 PMID:11758800.
65. Wang L, Jia C, Yu Z, Liu X, Kang L, Cong Y, Shan Y, Zhao Z, Ma B, Cong Y. Pennogenin tetraglycoside induces rat myometrial contraction and MLC20 phosphorylation via PLC-IP(3) and RhoA/Rho kinase signaling pathways. PLoS One. 2012;7 :e51536. doi: 10.1371/journal.pone.0051536. PMID: PMID: 23251567
66. Jin Y, Blikslager AT. The Regulation of Intestinal Mucosal Barrier by Myosin Light Chain Kinase/Rho Kinases. Int J Mol Sci. 2020,18;21:3550. doi: 10.3390/ijms21103550. PMID: 3244341.
67. Ai S, Kuzuya M, Koike T, Asai T, Kanda S, Maeda K, Shibata T, Iguchi A. Rho-Rho kinase is involved in smooth muscle cell migration through myosin light chain phosphorylation-dependent and independent pathways. Atherosclerosis. 2001;155: 321-327. doi: 10.1016/s0021-9150(00)00585-2. PMID: 11254902.
68. Deng JT, Bhaidani S, Sutherland C, MacDonald JA, Walsh MP. Rho-associated kinase and zipper-interacting protein kinase, but not myosin light chain kinase, are involved in the regulation of myosin phosphorylation in serum-stimulated human arterial smooth muscle cells. PLoS One. 2019,13;14:e0226406. doi: 10.1371/journal.pone.0226406. eCollection 2019. PMID: 31834925.
69. Szasz T, Webb RC. Rho-Mancing to Sensitize Calcium Signaling for Contraction in the Vasculature: Role of Rho Kinase. Adv Pharmacol. 2017;78: 303-322.doi: 10.1016/bs.apha.2016.09.001. PMID: 28212799.
70. Lu J, Landerholm TE, Wei JS, Dong XR, Wu SP, Liu X, Nagata K, Inagaki M, Majesky MW. Coronary smooth muscle differentiation from proepicardial cells requires rhoA-mediated actin reorganization and p160 rho-kinase activity. Dev Biol. 2001,15;240: 404-418. doi: 10.1006/dbio. 2001.0403. PMID: 11784072
71. Hellstrand P, Albinsson S. Stretch-dependent growth and differentiation in vascular smooth muscle: role of the actin cytoskeleton. Can J Physiol Pharmacol. 2005;83:869-875. doi: 10.1139/y05-061. PMID: 16333359
72. Han H, Yang S, Liang Y, Zeng P, Liu L, Yang X, Duan Y, Han J, Chen Y. Teniposide regulates the phenotype switching of vascular smooth muscle cells in a miR-21-dependent manner. Biochem Biophys Res Commun. 2018;506: 1040-1046. doi: 10.1016/j.bbrc.2018.10.198. PMID: 30409428.
73. Renteria LS, Raj JU, Ibe BO. Prolonged hypoxia modulates platelet activating factor receptor mediated responses by fetal ovine pulmonary vascular smooth muscle cells. Mol Genet Metab. 2010;101: 400-404. Doi:10. 1016/j-ymgme.2010.08.005. PMID:
74. Renteria LS, Cruz E, Ibe BO. Platelet-activating factor synthesis and receptor-mediated signaling are downregulated in ovine newborn lungs: relevance in postnatal pulmonary adaptation and persistent pulmonary hypertension of the newborn. J Dev Orig Health Dis. 2013 Dec;4(6):458-469. doi: 10.1017/S2040174413000366. PMID: 24924229.