Functional Improvement in -Islet Cells and Hepatocytes with Decreasing Deuterium from Low Carbohydrate Intake in a Type-II Diabetic

Main Article Content

Edwin C Jones Cortney L Jardet

Abstract

A 59-year-old patient with a 18-year history of type-II diabetes is presented who showed dramatic improvements to glucose tolerance tests and increased fasting hepatic glucose production with systemic deuterium depletion. Deuterium, which is well known to decrease the efficiency of the ATP syntheses nanomotors, is likely the mechanism leading to the systemic changes to both insulin and hepatic glucose production in the pancreas and liver, respectively. Systemic deuterium depletion occurs with consumption of low carbohydrate (keto) diets and deuterium depleted water.

Keywords: ATP, ATPase nanomotor, deuterium, deuterium-depletion, deuterium-depleted water, Beta-islet cell, glucose tolerance, HBa1c, type-II diabetes

Article Details

How to Cite
JONES, Edwin C; JARDET, Cortney L. Functional Improvement in -Islet Cells and Hepatocytes with Decreasing Deuterium from Low Carbohydrate Intake in a Type-II Diabetic. Medical Research Archives, [S.l.], v. 9, n. 6, june 2021. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2475>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.18103/mra.v9i6.2475.
Section
Case Reports

References

1. L.J. Dorgan and S.M.Schuster, “The Effect of Nitration and D2O on the Kinetics of Beef Heart Mitochondrial Adenosine Triphosphatase,” J. Biol. Chem. Vol. 256(8): 3910-3916, 1981.
2. J.L. Urbauer, L.J. Dorgan, and S.M. Schuster, “Effects of deuterium on the kinetics of beef heart mitochondrial ATPase,” Arch. Biochem. and Biophysics, vol. 231(2): 498-502, 1984. https://doi.org/10.1016/0003-9861(84)90413-2.
3. L.J. Dorgan, J.L. Urbauer, and S.M. Schuster, “Metal Dependence and Thermodynamic Characteristics of the Beef Heart Mitochondria Adenosine Triphosphatase,” J. Biol. Chem. Vol. 259(5): 2816-2821, 1984. https://pubmed.ncbi.nlm.nih.gov/6230351/
4. E.C. Jones, J.C. Rylands, and C.L. Jardet, “Regeneration of Pancreatic β-Islet Cells in a Type-II Diabetic,” Case Reports in Endocrinology, vol. 2018, Article ID 6147349, 6 pages, 2018. https://doi.org/10.1155/2018/6147349.
5. A.M. Ackermann, N.G. Moss, and K.H. Kaestner, “GABA and Artesunate Do Not Induce Pancreatic -to- Cell Transdifferentiation In Vivo,” Cell Metab, vol. 28(5): 787-792, 2018. https://doi.org/10.1016/j.cmet.2018.07.002.
6. T.A. Hussain, T.C. Mathew, A.A. Dashti, S. Asfar, N. Al-Zaid and H.M. Dashti, “Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes,” Nutrition, vol. 28(10): 1016-1021, 2012. https://doi.org/10.1016/j.nut.2012.01.016.
7. https://www.cignaturehealth.com/about-deuterium-food-facts/
8. https://extralightwater.com/what-foods-are-low-and-high-in-deuterium/
9. A.B. Lisitsyn, A.N. Bogatyrev, A.S. Dydykin, O.K. Derevitskaya, N.E. Soldatova and L.V. Fedulova, “Influence of Meat Semiprepared Foods Produced With an Addition of Water Having a Reduced Deuterium Content on the Indicators of the Laboratory Animals With the Model of Alloxan Diabetes,” Vopr. Pitan. Vol 86(1): 64-71, 2017. PMID: 30645892.
10. T. Halenova, I. Zlatskiy, A. Syroeshkin, T. Maximova and T. Pleteneva, “Deuterium-Depleted Water as Adjuvant Therapeutic Agent for Treatment of Diet-Induced Obesity in Rats,” Molecules vol. 25(1), 23, 2020. https://doi.org/10.3390/molecules25010023.
11. M. Molnár, K. Horváth, T. Dankó and G. Somlyai, “Effect of deuterium oxide (D2O) content of drinking water on glucose metabolism on STZ-induced diabetic rats,” in Proceedings of the 7th International Conference Functional Foods in the Prevention and Management of Metabolic Syndrome, 2010.
12. G. Somlyai, I. Somlyai, I. Fórizs, G. Czuppon, A. Papp and M. Molnár, “Effect of Systemic Subnormal Deuterium Level on Metabolic Syndrome Related and other Blood Parameters in Humans: A Preliminary Study,” Molecules vol. 25(6), 1376, 2020. https://doi.org/10.3390/molecules25061376.
13. A. Bulotta, H. Hui, E. Anastasi, C. Bertolotto, L.G. Boros, U. Di Mario and R. Perfetti, “Cultured pancreatic ductal cells undergo cell cycle re-distribution and beta-cell-like differentiation in response to glucagon-like peptide-1,” J. Mol. Endocrinol. Vol. 29(3): 347-360, 2002. https://doi.org/10.1677/jme.0.0290347.
14. The Center for Deuterium Depletion. https://www.ddcenters.com/.
15. E. Donga, M. van Dijk, J.G. van Dijk, N.R. Biermasz, G.-J. Lammers, K. van Kralingen, R.P.L.M. Hoogma, E.P.M. Corssmit, and J.A. Romijn, “Partial Sleep Restriction Decreases Insulin Sensitivity in Type 1 Diabetes,” Diabetes Care, vol. 33(7): 1573-1577, 2010. https://doi.org/10.2337/dc09-2317.
16. D. Pieribone, “Bio-electrical Impedance Analysis,” TheBody, 1998. https://www.thebody.com/article/bio-electrical-impedance-analysis.
17. L. Boros, “Biological Nanomechanics: ATP Synthesis and Deuterium Depletion,” 2016 presentation. https://youtu.be/6P8gqB4zLGQ
18. M.T. Jensen, “Resting heart rate and relation to disease and longevity: past, present and future, “ Scand J Clin Lab Invest, 79(1-2): 108-116, 2019. https://doi.org/10.1080/00365513.2019.1566567
19. P.R. Schloerb, B.J. Friis-Hansen, I.S. Edelman, A.K. Solomon and F.D. Moore, “The Measurement of Total Body Water in the Human Subject by Deuterium Oxide Dilution with a Consideration of the Dynamics of Deuterium Distribution,” J. Clin. Invest., vol. 29(10): 1296-1310, 1950. https://doi.org/10.1172/JCI102366.
20. D. Hao, M.O. Sarfaraz, F. Farshidfar, D.G. Bebb, C.Y. Lee, C.M. Card, M. David, and A.M. Weljie, “Temporal characterization of serum metabolite signatures in lung cancer patients undergoing treatment,” Metabolomics (2016) 12:58 https://doi.org/10.1007/s11306-016-0961-5.
21. S.J. Gros, S.G. Holland-Cunz, C.T. Supuran and O. Braissant, “Personalized Treatment Response Assessment for Rare Childhood Tumors Using Microcalorimetry-Exemplified by Use of Carbonic Anhydrase IX and Aquaporin 1 Inhibitors,” Int. J. Mol. Sci. 2019, 20, 4984. https://doi.org/10.3390/ijms20204984.
22. N. Pandey, V. Lanke and P.K. Vinod, “Network-based metabolic characterization of renal cell carcinoma,” Scientific Reports 2020, 10:5955. https://doi.org/10.1038/s41598-020-62853-8.
23. K. Arima, M.C. Lau, M. Zhao et al., “Metabolic Profiling of Formalin-Fixed Paraffin-Embedded Tissues Discriminates Normal Colon from Colorectal Cancer, Mol. Cancer Res. 2020; 18: 883-90. https://doi.org/10.1158/1541-7786.MCR-19-1091.
24. L.G. Boros, D.P. D’Agostino, H.E. Katz, J.P. Roth, E.J. Meuillet and G. Somlyai, “Submolecular regulation of cell transformation by deuterium depleting water exchange reactions in the tricarboxylic acid substrate cycle,” Med. Hypothesis 87 (2016) 69-74. https://doi.org/10.1016/j.mehy.2015.11.016.
25. L.G. Boros, T.Q. Collins and G. Somlyai, “What to eat or what not to eat – that is still the question,” Neuro-Onc. Vol. 19(4): 595-596, 2017. https://doi.org/10.1093/neuonc/now284
26. H.M. De Feyter, K.L. Behar, Z.A. Corbin, R.K. Fulbright, P.B. Brown and S. McIntyre, “Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo.” Science Advances 4(8): eaat7314, 2018. https://doi.org/10.1126/sciadv.aat7314