Coevolution study of tau and a-synuclein suggests a connection between their normal interaction in neurons and the Parkinson's disease-associated mutation A53T

Main Article Content

James M Gruschus


Alpha-synuclein lies at the center of Parkinson’s disease etiology, and polymorphisms in the gene for the microtubule-associated protein tau are risk factors for getting the disease.  Tau and a-synuclein interact in vitro, and a-synuclein can also compete with tau binding to microtubules.  To test whether these interactions might be part of their natural biological functions, a correlated mutation analysis was performed between tau and a-synuclein, looking for evidence of coevolution.  For comparison, analyses were also performed between tau and b- and g-synuclein.  In addition, analyses were performed between tau and the synuclein proteins and the neuronal tubulin proteins. Potential correlated mutations were detected between tau and a-synuclein, one involving an a-synuclein residue known to interact with tau in vitro, Asn122, and others involving the Parkinson’s disease-associated mutation A53T. No significant correlated mutations were seen between tau and b- and g-synuclein.  Tau showed potential correlated mutations with the neuron-specific bIII-tubulin protein, encoded by the TUBB3 gene.  No convincing correlated mutations were seen between the synuclein and tubulin proteins, with the possible exception of b-synuclein with bIVa-tubulin, encoded by the TUBB4A gene.   While the correlated mutations between tau and a-synuclein suggest the two proteins have coevolved, additional study will be needed to confirm that their interaction is part of their normal biological function in cells.


Download data is not yet available.

Article Details

How to Cite
GRUSCHUS, James M. Coevolution study of tau and a-synuclein suggests a connection between their normal interaction in neurons and the Parkinson's disease-associated mutation A53T. Medical Research Archives, [S.l.], v. 9, n. 7, july 2021. ISSN 2375-1924. Available at: <>. Date accessed: 19 may 2022. doi:
Research Articles


1. Kempster PA, O'Sullivan SS, Holton JL, Revesz T, Lees AJ. Relationships between age and late progression of Parkinson’s disease: a clinico-pathological study. Brain. 2010;133(Pt6):1755-1762. doi:10.1093/brain/awq059

2. Zeng Y, Yang J, Zhang B, Gao M, Su Z, Huang Y. The structure and phase of tau: from monomer to amyloid filament. Cell Mol Life Sci. 2021;78(5):1873-1886. doi:10.1007/s00018-020-03681-x

3. Edwards TL, Scott WK, Almonte C, Burt A, Powell EH, Beecham GW, Wang L, Züchner S, Konidari I, Wang G, Singer C, Nahab F, Scott B, Stajich JM, Pericak-Vance M, Haines J, Vance JM, Martin ER. Genome-wide association study confirms SNPs in SNCA and the MAPT region as common risk factors for Parkinson disease. Ann Hum Genet. 2010;74(2):97-109. doi:10.1111/j.1469-1809.2009.00560.x

4. Siegert A, Rankovic M, Favretto F, et al. Interplay between tau and α-synuclein liquid-liquid phase separation [published online ahead of print, 2021 Jan 15]. Protein Sci. 2021;10.1002/pro.4025. doi:10.1002/pro.4025

5. Carnwath T, Mohammed R, Tsiang D. The direct and indirect effects of α-synuclein on microtubule stability in the pathogenesis of Parkinson's disease. Neuropsychiatr Dis Treat. 2018;14:1685-1695. doi:10.2147/NDT.S166322

6. Kadavath H, Hofele RV, Biernat J, et al. Tau stabilizes microtubules by binding at the interface between tubulin heterodimers. Proc Natl Acad Sci U S A. 2015;112(24):7501-7506. doi:10.1073/pnas.1504081112

7. Melková K, Zapletal V, Narasimhan S, et al. Structure and functions of microtubule associated proteins tau and MAP2c: similarities and differences. Biomolecules. 2019;9(3):105. doi:10.3390/biom9030105

8. Roll-Mecak A. The tubulin code in microtubule dynamics and information encoding. Dev Cell. 2020;54(1):7-20. doi:10.1016/j.devcel.2020.06.008

9. Uhlén M, Fagerberg L, Hallström BM, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419. doi:10.1126/science.1260419

10. Zhang H, Kouadio A, Cartledge D, Godwin AK. Role of gamma-synuclein in microtubule regulation. Exp Cell Res. 2011;317(10):1330-1339. doi:10.1016/j.yexcr.2010.10.013
11. Gruschus, JM. An evolutionary affair – the connection between Gaucher disease and Parkinson's disease. In Synuclein and the Coelacanth – The Molecular and Evolutionary Origins of Parkinson's Disease. Cambridge, MA, Academic Press, 2021:159-179. doi:10.1016/B978-0-323-85707-9.00015-0

12. Gruschus JM. Did α-synuclein and glucocerebrosidase coevolve? Implications for Parkinson's disease. PLoS One. 2015;10(7):e0133863. doi:10.1371/journal.pone.0133863

13. Dunn SD, Wahl LM, Gloor GB. Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction. Bioinformatics. 2008;24(3):333-340. doi:10.1093/bioinformatics/btm604

14. Gustke N, Trinczek B, Biernat J, Mandelkow EM, Mandelkow E. Domains of tau protein and interactions with microtubules. Biochemistry. 1994;33(32):9511-9522. doi:10.1021/bi00198a017

15. Alexander JE, Hunt DF, Lee MK, et al. Characterization of posttranslational modifications in neuron-specific class III beta-tubulin by mass spectrometry. Proc Natl Acad Sci U S A. 1991;88(11):4685-4689. doi:10.1073/pnas.88.11.4685

16. Ju JH, Maeng JS, Lee DY, Piszczek G, Gelmann EP, Gruschus JM. Interactions of the acidic domain and SRF interacting motifs with the NKX3.1 homeodomain. Biochemistry. 2009;48(44):10601-10607. doi:10.1021/bi9013374

17. Wu KP, Baum J. Detection of transient interchain interactions in the intrinsically disordered protein alpha-synuclein by NMR paramagnetic relaxation enhancement. J Am Chem Soc. 2010;132(16):5546-5547. doi:10.1021/ja9105495

18. McKibben KM, Rhoades E. Independent tubulin binding and polymerization by the proline-rich region of Tau is regulated by Tau's N-terminal domain. J Biol Chem. 2019;294(50):19381-19394. doi:10.1074/jbc.RA119.010172

19. Kowarsch A, Fuchs A, Frishman D, Pagel P. Correlated mutations: a hallmark of phenotypic amino acid substitutions. PLoS Comput Biol. 2010;6(9):e1000923. doi:10.1371/journal.pcbi.1000923

20. Gruschus, JM. Attack of the oligomers – alpha-synuclein amyloid oligomers and their pathogenic roles. In Synuclein and the Coelacanth – The Molecular and Evolutionary Origins of Parkinson's Disease. Cambridge, MA, Academic Press, 2021:129-158. doi:10.1016/B978-0-323-85707-9.00001-0

21. Kwok JB, Teber ET, Loy C, et al. Tau haplotypes regulate transcription and are associated with Parkinson's disease. Ann Neurol. 2004;55(3):329-334. doi:10.1002/ana.10826

22. Sánchez-Juan P, Moreno S, de Rojas I, et al. The MAPT H1 haplotype is a risk factor for Alzheimer's disease in APOE ε4 non-carriers. Front Aging Neurosci. 2019;11:327. doi:10.3389/fnagi.2019.00327

23. Labbé C, Ogaki K, Lorenzo-Betancor O, et al. Role for the microtubule-associated protein tau variant p.A152T in risk of α-synucleinopathies. Neurology. 2015;85(19):1680-1686. doi:10.1212/WNL.0000000000001946

24. Sydow A, Hochgräfe K, Könen S, et al. Age-dependent neuroinflammation and cognitive decline in a novel Ala152Thr-Tau transgenic mouse model of PSP and AD. Acta Neuropathol Commun. 2016;4:17. doi:10.1186/s40478-016-0281-z