Urologic Innovation in the Spaceflight Environment: Challenges, Opportunities, and Future Directions Challenges, Opportunities, and Future Directions

Main Article Content

Zachary Benjamin Kahlenberg Danielle J Carroll Octav Cristea Emmanuel Urquieta Nabil K Bissada Jeffery A Jones

Abstract

The coming decades are poised to usher in an era of commercial spaceflight and extended duration missions beyond low-earth orbit. Urologic challenges and conditions have been central to the history of human spaceflight, and their effective management will continue to play a key role in future endeavors. Voiding equipment, such as the Universal Waste Management System aboard the International Space Station, is emblematic of the significant technical strides that have been made to improve the usability and functionality of non-terrestrial waste elimination and containment devices. Detailed investigations over the past few decades have demonstrated that crew members are at an increased risk of developing nephrolithiasis due, in large part, to the effects of microgravity. Renal calculi and their potentially debilitating effects represent one of the most significant urologic complications that could impact the success of future long duration missions. Other urologic conditions, such as urinary tract infections, urinary retention, and urinary incontinence have been well documented during flight and pose their own challenges. While preventive measures remain central to all mitigation strategies, imaging and treatment modalities such as a S-Mode ultrasound, burst wave lithotripsy, and ultrasonic propulsion are being developed and evaluated as in-flight countermeasures for urologic pathology. Parabolic flights have been conducted to develop and evaluate the feasibility of using surgical and endoscopic techniques to treat urologic conditions in microgravity. Although less often discussed, occupation-related delayed conception and the risk of radiation-induced gamete damage suggests that there may be a need for NASA to adopt a policy for Assisted Reproductive Technology for both male and female astronauts. The last 60 years of human spaceflight have provided a unique opportunity for discovery and medical technology innovation. This paper serves to highlight the advancements that will help pave the way for the next 60 years of human spaceflight.

Article Details

How to Cite
KAHLENBERG, Zachary Benjamin et al. Urologic Innovation in the Spaceflight Environment: Challenges, Opportunities, and Future Directions. Medical Research Archives, [S.l.], v. 9, n. 9, sep. 2021. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2542>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.18103/mra.v9i9.2542.
Section
Review Articles

References

1. Jones JA, Jennings R, Pietryzk R, Ciftcioglu N, Stepaniak P. Genitourinary issues during spaceflight: a review. Int J Impot Res. 2005;17 Suppl 1:S64-67. doi:10.1038/sj.ijir.3901431
2. Stepaniak PC, Ramchandani SR, Jones JA. Acute urinary retention among astronauts. Aviat Space Environ Med. 2007;78(4 Suppl):A5-8.
3. Maciolek KA, Best SL. How Do Astronauts Urinate? The History of Innovations Enabling Voiding in the Void. Urology. 2019;128:8-13. doi:10.1016/j.urology.2018.11.065
4. Volpin F, Badeti U, Wang C, et al. Urine Treatment on the International Space Station: Current Practice and Novel Approaches. Membranes (Basel). 2020;10(11). doi:10.3390/membranes10110327
5. Stapleton TJ, Broyan JL, Baccus S, Conroy W. Development of a Universal Waste Management System. In: 43rd International Conference on Environmental Systems. American Institute of Aeronautics and Astronautics; 2013. doi:10.2514/6.2013-3400
6. Anderson SA, Kaufman CA, Johnson KM. Urine Removal from Suited Crew in Orion Vehicle Depressurization Scenario. :9.
7. Johnston RS, Dietlein LF, Berry CA, Parker JF, West V. Biomedical Results of Apollo. Published online January 1, 1975. Accessed June 22, 2021. https://ntrs.nasa.gov/citations/19760005580
8. Jones J, Pietrzyk RA, Cristea O, Whitson PA. Chapter 18: Renal and Genitourinary Concerns. In: Barratt MR, Baker E, Pool SL, eds. Priciples of Clinical Medicine for Spaceflight. Springer Nature; 2020.
9. Jones JA, Sargsyan AE, Barr YR, et al. Diagnostic ultrasound at MACH 20: retroperitoneal and pelvic imaging in space. Ultrasound Med Biol. 2009;35(7):1059-1067. doi:10.1016/j.ultrasmedbio.2009.01.002
10. Khan SR, Pearle MS, Robertson WG, et al. Kidney stones. Nat Rev Dis Primers. 2016;2:16008. doi:10.1038/nrdp.2016.8
11. Whitson PA, Pietrzyk RA, Pak CYC, Cintron NM. Alterations in Renal Stone Risk Factors after Space Flight. The Journal of Urology. 1993;150(3):803-807. doi:10.1016/S0022-5347(17)35618-5
12. Smith SM, Heer M, Shackelford LC, et al. Bone metabolism and renal stone risk during International Space Station missions. Bone. 2015;81:712-720. doi:10.1016/j.bone.2015.10.002
13. Smith SM, McCoy T, Gazda D, Morgan JLL, Heer M, Zwart SR. Space Flight Calcium: Implications for Astronaut Health, Spacecraft Operations, and Earth. Nutrients. 2012;4(12):2047-2068. doi:10.3390/nu4122047
14. Smith SM, Zwart SR, Heer M, Hudson EK, Shackelford L, Morgan JL. Men and Women in Space: Bone Loss and Kidney Stone Risk After Long-Duration Spaceflight: BONE LOSS AND KIDNEY STONE RISK IN SPACEFLIGHT. J Bone Miner Res. 2014;29(7):1639-1645. doi:10.1002/jbmr.2185
15. Lehnhardt K. HRR - Risk - Risk of Renal Stone Formation. Accessed May 1, 2021. https://humanresearchroadmap.nasa.gov/risks/risk.aspx?i=81
16. Butler D, Kertsman E. Medical Updates to the International Space Station Probabilistic Risk Assessment Model Using the Integrated Medical Model. Presented at the: Presentation to the Multilateral Medical Operations Panel, NASA Johnson Space Center; 2011; Houston Texas.
17. Scales CD, Smith AC, Hanley JM, Saigal CS. Prevalence of Kidney Stones in the United States. Eur Urol. 2012;62(1):160-165. doi:10.1016/j.eururo.2012.03.052
18. Uribarri J, Oh MS, Carroll HJ. The first kidney stone. Ann Intern Med. 1989;111(12):1006-1009. doi:10.7326/0003-4819-111-12-1006
19. 9780929776002: Diary of a Cosmonaut: 211 Days in Space (English and Russian Edition) - AbeBooks - Lebedev, Valentin Vital Evich: 0929776003. Accessed June 22, 2021. https://www.abebooks.com/9780929776002/Diary-Cosmonaut-211-Days-Space-0929776003/plp
20. Whitson PA, Pietrzyk RA, Sams CF. Urine volume and its effects on renal stone risk in astronauts. Aviat Space Environ Med. 2001;72(4):368-372.
21. Whitson PA, Pietrzyk RA, Morukov BV, Sams CF. The risk of renal stone formation during and after long duration space flight. Nephron. 2001;89(3):264-270. doi:10.1159/000046083
22. Pietrzyk RA, Jones JA, Sams CF, Whitson PA. Renal stone formation among astronauts. Aviat Space Environ Med. 2007;78(4 Suppl):A9-13.
23. Kidney Stones: Medical Mangement Guideline - American Urological Association. Accessed June 22, 2021. https://www.auanet.org/guidelines/guidelines/kidney-stones-medical-mangement-guideline
24. Whitson PA, Pietrzyk RA, Jones JA, Nelman-Gonzalez M, Hudson EK, Sams CF. Effect of potassium citrate therapy on the risk of renal stone formation during spaceflight. J Urol. 2009;182(5):2490-2496. doi:10.1016/j.juro.2009.07.010
25. Okada A, Ichikawa J, Tozawa K. [Kidney stone formation during space flight and long-term bed rest]. Clin Calcium. 2011;21(10):1505-1510. doi:CliCa111015051510
26. Leblanc A, Matsumoto T, Jones J, et al. Bisphosphonates as a supplement to exercise to protect bone during long-duration spaceflight. Osteoporos Int. 2013;24(7):2105-2114. doi:10.1007/s00198-012-2243-z
27. Sibonga J, Matsumoto T, Jones J, et al. Resistive exercise in astronauts on prolonged spaceflights provides partial protection against spaceflight-induced bone loss. Bone. 2019;128:112037. doi:10.1016/j.bone.2019.07.013
28. Sur RL, Shore N, L’Esperance J, et al. Silodosin to facilitate passage of ureteral stones: a multi-institutional, randomized, double-blinded, placebo-controlled trial. Eur Urol. 2015;67(5):959-964. doi:10.1016/j.eururo.2014.10.049
29. Coll DM, Varanelli MJ, Smith RC. Relationship of spontaneous passage of ureteral calculi to stone size and location as revealed by unenhanced helical CT. AJR Am J Roentgenol. 2002;178(1):101-103. doi:10.2214/ajr.178.1.1780101
30. Jones JA, Johnston S, Campbell M, Miles B, Billica R. Endoscopic surgery and telemedicine in microgravity: developing contingency procedures for exploratory class spaceflight. Urology. 1999;53(5):892-897. doi:10.1016/s0090-4295(99)00024-2
31. Jones JA, Kirkpatrick AW, Hamilton DR, et al. Percutaneous bladder catheterization in microgravity. Can J Urol. 2007;14(2):3493-3498.
32. Chen TT, Samson PC, Sorensen MD, Bailey MR. Burst wave lithotripsy and acoustic manipulation of stones. Current Opinion in Urology. 2020;30(2):149-156. doi:10.1097/MOU.0000000000000727
33. Ray AA, Ghiculete D, Pace KT, Honey RJD. Limitations to ultrasound in the detection and measurement of urinary tract calculi. Urology. 2010;76(2):295-300. doi:10.1016/j.urology.2009.12.015
34. Jones J, Jennings R, Baker E. Renal, Genitourinary, and Gynecological Health Issues. Biomedical Results of the Space Shuttle Program. eds Stepaniak P, Risin, D. NASA 17Nov 2013; ISBN-13 978-0615866130
35. Simon JC, Dunmire B, Bailey MR, Sorensen MD. Developing Complete Ultrasonic Management Of Kidney Stones For Spaceflight. J Space Saf Eng. 2016;3(2):50-57. doi:10.1016/S2468-8967(16)30018-0
36. Dunmire B, Lee FC, Hsi RS, et al. Tools to Improve the Accuracy of Kidney Stone Sizing with Ultrasound. J Endourol. 2015;29(2):147-152. doi:10.1089/end.2014.0332
37. May PC, Haider Y, Dunmire B, et al. Stone-Mode Ultrasound for Determining Renal Stone Size. J Endourol. 2016;30(9):958-962. doi:10.1089/end.2016.0341
38. Harper JD, Cunitz BW, Dunmire B, et al. First in Human Clinical Trial of Ultrasonic Propulsion of Kidney Stones. J Urol. 2016;195(4 Pt 1):956-964. doi:10.1016/j.juro.2015.10.131
39. The Butterfly iQ Catches a Ride on the SpaceX Dragon to Space. Accessed June 22, 2021. https://ir.butterflynetwork.com/news/news-details/2021/The-Butterfly-iQ-Catches-a-Ride-on-the-SpaceX-Dragon-to-Space/default.aspx
40. Campbell MR, Billica RD, Johnston SL. Surgical bleeding in microgravity. Surg Gynecol Obstet. 1993;177(2):121-125.
41. Campbell MR, Dawson DL, Melton S, Hooker D, Cantu H. Surgical instrument restraint in weightlessness. Aviat Space Environ Med. 2001;72(10):871-876.
42. Sorensen MD, Bailey MR, Hsi RS, et al. Focused Ultrasonic Propulsion of Kidney Stones: Review and Update of Preclinical Technology. J Endourol. 2013;27(10):1183-1186. doi:10.1089/end.2013.0315
43. Hamilton D, Smart K, Melton S, Polk JD, Johnson-Throop K. Autonomous medical care for exploration class space missions. J Trauma. 2008;64(4 Suppl):S354-363. doi:10.1097/TA.0b013e31816c005d
44. Ronca AE, Baker ES, Bavendam TG, et al. Effects of Sex and Gender on Adaptations to Space: Reproductive Health. J Womens Health (Larchmt). 2014;23(11):967-974. doi:10.1089/jwh.2014.4915
45. Barbrow ST. Radiation Effects on Astronautic Fertility in Space: Deep Space Policy. 2020;16(1):5.
46. Vuolo M, Baiocco G, Barbieri S, et al. Exploring innovative radiation shielding approaches in space: A material and design study for a wearable radiation protection spacesuit. Life Sciences in Space Research. 2017;15. doi:10.1016/j.lssr.2017.08.003
47. Patel ZS, Brunstetter TJ, Tarver WJ, et al. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars. npj Microgravity. 2020;6(1):1-13. doi:10.1038/s41526-020-00124-6
48. Milstead L. Human Research Program Integrated Research Plan. NASA. Published March 2021. Accessed June 22. https://humanresearchroadmap.nasa.gov/Documents/IRP_Rev-Current.pdf
49. Baird D. Artemis I: Demonstrating the Capabilities of NASA’s United Networks. NASA. Published October 5, 2020. Accessed June 22, 2021. http://www.nasa.gov/feature/goddard/2020/artemis-i-demonstrating-the-capabilities-of-nasa-s-united-networks
50. Mars.nasa.gov. Trip to Mars. Accessed June 22, 2021.https://mars.nasa.gov/mars2020/timeline/cruise/
51. Khoder WY, Bader M, Sroka R, Stief C, Waidelich R. Efficacy and safety of Ho:YAG laser lithotripsy for ureteroscopic removal of proximal and distal ureteral calculi. BMC Urol. 2014;14:62. doi:10.1186/1471-2490-14-62
52. NASA. Universal Waste Management System. https://techport.nasa.gov/view/93128]
53. Anderson S, Kaufman C, Johnson K. Urine Removal from Suited Crew in Orion Vehicle Depressurization Scenario. - https://ntrs.nasa.gov/api/citations/20200001583/downloads/20200001583.pdf
54. Nemon J. Preparing To Stock The Medicine Cabinet for Long-Duration Missions. - https://www.nasa.gov/mission_pages/station/research/news/Medication_ISS.html
55. Johnson M. Using Ultrasound to Zap Kidney Stones and Other Health Problems in Space. https://www.nasa.gov/mission_pages/station/research/news/b4h-3rd/hh-ultrasound-to-zap-kidney-stones
56. Kirkpatrick AW, Jones JA, Sargsyan A, et al. Trauma sonography for use in microgravity. Aviat Space Environ Med. 2007;78(4 Suppl):A38-42.
57. A.Rafiq, T. J. Broderick, D. R. Williams, C.R. Doarn, J.A. Jones, R.C. Merrell: Assessment of surgical skills in parabolic gravity. Aviation, Space, Environ Med 76(4) April 2005; p.385-91.