Treatment of Mature/Maturing Patients with Adolescent Idiopathic Scoliosis (Sanders ≥ 5) Using a Unique Anterior Scoliosis Correction Technique

Main Article Content

Christopher L. Antonacci, MD, MS, MPH http://orcid.org/0000-0002-9793-0524 M. Darryl Antonacci, MD William P. Bassett, MD http://orcid.org/0000-0003-3978-292X Laury A. Cuddihy, MD http://orcid.org/0000-0002-8042-2929 Allison R. Haas, RNFA http://orcid.org/0000-0002-5654-6243 Janet L. Cerrone, PA-C Dominique S. Haoson Randal R. Betz, MD http://orcid.org/0000-0003-2368-9966

Abstract

Anterior vertebral body tethering (VBT) in growing children has been reported as an alternative to fusion for thoracic idiopathic scoliosis. Anterior scoliosis correction (ASC) is our multi-year, multi-generational advancement upon VBT and is a “de-tethering,” not tethering, procedure. ASC incorporates cords/screws similarly to VBT but is a technique that allows for large derotation, curve correction, and restoration of kyphosis using anterior longitudinal ligament complex release (ligament, annular capsule, and disc). It has been used to treat adolescents with minimal or no growth remaining. In this retrospective IRB-approved analysis, we report outcomes of an early cohort of skeletally maturing/mature (Sanders ≥ 5) patients undergoing ASC.


Methods: Inclusion criteria: patients with AIS, at least one operative curve 35-70°, Sanders ≥ 5, age ≤ 21 years, minimum 2-year follow-up or failure before. Forty-nine patients with 82 treated curves with surgery from January 2015 to December 2017 met the criteria and were reviewed. Mean follow-up was 30.3 months range 24 to 50 months. Average age at surgery was 15.2 years.


Results: The average coronal correction was 65.5% for thoracic curves and 66.7% for lumbar curves. 71.4% of patients with thoracic curves received at least 1 thoracic disc release. Kyphosis (T5-T12) calculated 3D corrected from average 2° pre to 34° post-op. Clinical success (final curve ≤ 30°) was achieved in 45/49 (92%) patients and in 78/82 curves (95%). One unanticipated revision was recommended but not performed.


Conclusion: The 2-4 year results of ASC in maturing and mature patients with AIS demonstrated average curve correction of 65.5% in thoracic and 66.7% in lumbar curves. Clinical success with residual curves ≤ 30° was achieved in 47/49 (96%) of all thoracic curves and 31/33 (94%) of all lumbar curves. Average 3D thoracic kyphosis corrected from 2° pre to 34° post.

Keywords: Adolescent idiopathic scoliosis, anterior scoliosis correction, kyphosis, derotation, mature, maturing

Article Details

How to Cite
ANTONACCI, Christopher L. et al. Treatment of Mature/Maturing Patients with Adolescent Idiopathic Scoliosis (Sanders ≥ 5) Using a Unique Anterior Scoliosis Correction Technique. Medical Research Archives, [S.l.], v. 9, n. 12, jan. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2632>. Date accessed: 07 oct. 2024. doi: https://doi.org/10.18103/mra.v9i12.2632.
Section
Research Articles

References

1. Agabegi SS, Kazemi N, Sturm PF, Mehlman CT. Natural history of adolescent idiopathic scoliosis in skeletally mature patients: a critical review. J Am Acad Orthop Surg. 2015;23(12):714-23. http://dx.doi.org/10.5435/JAAOS-D-14-00037.
2. Weinstein SL, Dolan LA, Wright JG, Dobbs MB. Effects of bracing in adolescents with idiopathic scoliosis. N Engl J Med. 2013;369(16):1512-21. http://dx.doi.org/10.1056/NEJM0a1307337.
3. Danielsson AJ, Romberg K, Nachemson AL. Spinal range of motion, muscle endurance, and back pain and function at least 20 years after fusion or brace treatment for adolescent idiopathic scoliosis: a case-control study. Spine (Phila Pa 1976). 2006;31(3):275-83.
4. Green DW, Lawhorne TW, Widmann RF, Kepler CK, Ahern C, Mintz DN, et al. Long-term magnetic resonance imaging follow-up demonstrates minimal transitional level lumbar disc degeneration after posterior spine fusion for adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2011;36(23):1948-54. http://dx.doi.org/10.1097/BRS.0b013e3181ff1ea9.
5. Kepler CK, Meredith DS, Green DW, Widmann RF. Long-term outcomes after posterior spine fusion for adolescent idiopathic scoliosis. Curr Opin Pediatr. 2012;24(1):68-75.
6. Samdani AF, Ames RJ, Kimball JS, Pahys JM, Grewal G, Pelletier GJ, et al. Anterior vertebral body tethering for idiopathic scoliosis: two-year results. Spine (Phila Pa 1976). 2014;39(20):1688-93.
7. Samdani AF, Ames RJ, Kimball JS, Pahys JM, Grewal H, Pelletier GJ, et al. Anterior vertebral body tethering for immature adolescent idiopathic scoliosis: one-year results on the first 32 patients. Eur Spine J. 2015;24(7):1533-9.
8. Kasliwal MK, Shaffrey CI, Lenke LG, Dettori JR, Ely CG, Smith JS. Frequency, risk factors, and treatment of distal adjacent segment pathology after long thoracolumbar fusion: a systematic review. Spine (Phila Pa 1976). 2012;37(22 Suppl):S165-79. http://dx.doi.org/10.1097/BRS.0b013e31826d62c9.
9. Betz RR, Ranade A, Samdani AF, Chafetz R, D'Andrea L, Gaughan JP, et al. Vertebral body stapling: a fusionless treatment option for a growing child with moderate idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35(2):169-76.
10. Newton PO, Farnsworth CL, Faro FD, Mahar AT, Odell TR, Mohamad F, et al. Spinal growth modulation with an anterolateral flexible tether in an immature bovine model: disc health and motion preservation. Spine (Phila Pa 1976). 2008;33(7):724-33.
11. Newton PO, Fricka KB, Lee SS, Farnsworth CL, Cox TG, Mahar AT. Asymmetrical flexible tethering of spine growth in an immature bovine model. Spine (Phila Pa 1976). 2002;27(7):689-93.
12. Crawford 3rd CH, Lenke LG. Growth modulation by means of anterior tethering resulting in progressive correction of juvenile idiopathic scoliosis: a case report. J Bone Joint Surg Am. 2010;92(1):202-9.
13. Newton PO, Faro FD, Farnsworth CL, Shapiro GS, Mohamad F, Parent S, et al. Multilevel spinal growth modulation with an anterolateral flexible tether in an immature bovine model. Spine (Phila Pa 1976). 2005;30(23):2608-13.
14. Lavelle WF, Moldavsky M, Cai Y, Ordway NR, Bucklen BS. An initial biomechanical investigation of fusionless anterior tether constructs for controlled scoliosis correction. Spine J. 2016;16(3):408-13. http://dx.doi.org/10.1016/j.spinee.2015.11.004.
15. Miyanji F, Pawelek J, Nasto LA, Parent S. A prospective multicenter analysis of the efficacy of anterior vertebral body tethering (AVBT) in the treatment of idipathic scoliosis [abstract]. Spine Deform. 2018;6(6):820.
16. Newton PO, Kluck DG, Saito W, Yaszay B, Bartley CE, Bastrom TP. Anterior spinal growth tethering for skeletally immature patients with scoliosis. A retrospective look two to four years postoperatively. J Bone Joint Surg Am. 2018;100(19):1691-7.
17. Hoernschemeyer DG, Boeyer ME, Robertson ME, Loftis CM, Worley JR, Tweedy NM, et al. Anterior vertebral body tethering for adolescent scoliosis with growth remaining: a retrospective review of 2 to 5-year postoperative results. J Bone Joint Surg Am. 2020;102(13):1169-76. http://dx.doi.org/10.2106/JBJS.19.00980.
18. Betz RR, Antonacci MD, Cuddihy LA. Alternatives to spinal fusion surgery in pediatric deformity. Curr Orthop Pract. 2018;29(5):430-5.
19. Parvaresh KC, Osborn EJ, Reighard FG, Doan J, Bastrom TP, Newton PO. Predicting 3D thoracic kyphosis using traditional 2D radiographic measurements in adolescent idiopathic scoliosis. Spine Deform. 2017;5(3):159-65.
20. Weinstein SL, Dolan LA, Spratt KF, Peterson KK, Spoonamore MJ, Ponseti IV. Health and function of patients with untreated idiopathic scoliosis: a 50-year natural history study. JAMA. 2003;289(5):559-67.
21. Hasler CC, Wietlisbach S, Buchler P. Objective compliance of adolescent girls with idiopathic scoliosis in a dynamic SpineCor brace. J Child Orthop. 2010;4(3):211-8.
22. Nicholson GP, Ferguson-Pell MW, Smith K, Edgar M, Morley T. The objective measurement of spinal orthosis use for the treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2003;28(19):2243-50.
23. Antonacci CL, Antonacci MD, Bassett WP, Cerrone JL, Haas AR, Haoson DS, et al. Treatment of patients with scoliosis using a unique anterior scoliosis correction technique. Med Res Arch 2021;9(7). http://dx.doi.org/https://doi.org/10.18103/mra.v4i7.2463.
24. Samdani AF, Pahys JM, Ames RJ, Grewal H, Pelletier GJ, Hwang SW, et al. Prospective follow-up of anterior vertebral body tethering for idiopathic scoliosis: interim results from an FDA IDE study. J Bone Joint Surg Am. 2021;103(17):1611-9. http://dx.doi.org/10.2106/JBJS.20.01503.
25. Newton PO, Marks MC, Bastrom TP, Betz R, Clements D, Lonner B, et al. Surgical treatment of Lenke 1 main thoracic idiopathic scoliosis: results of a prospective, multicenter study. Spine (Phila Pa 1976). 2013;38(4):328-38. http://dx.doi.org/10.1097/BRS.0b013e31826c6df4.
26. Trobisch PD, Baroncini A. Preliminary outcomes after vertebral body tethering (VBT) for lumbar curves and subanalysis of a 1- versus 2-tether construct. Eur Spine J. 2021. http://dx.doi.org/10.1007/s00586-021-07009-6.
27. Kelly DM, McCarthy RE, McCullough FL, Kelly HR. Long-term outcomes of anterior spinal fusion with instrumentation for thoracolumbar and lumbar curves in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2010;35(2):194-8.
28. Sweet FA, Lenke LG, Bridwell KH, Blanke KM, Whorton J. Prospective radiographic and clinical outcomes and complications of single solid rod instrumented anterior spinal fusion in adolescent idiopathic scoliosis. Spine (Phila Pa 1976). 2001;26(18):1956-65.
29. Sitoula P, Verma K, Holmes L, Gabos PG, Sanders JO, Yorgova P, et al. Prediction of curve progression in idiopathic scoliosis: validation of the Sanders skeletal maturity staging system. Spine (Phila Pa 1976). 2015;40(13):1006-13.
30. Sucato DJ, Agrawal S, O'Brien MF, Lowe TG, Richards SB, Lenke L. Restoration of thoracic kyphosis after operative treatment of adolescent idiopathic scoliosis: a multicenter comparison of three surgical approaches. Spine (Phila Pa 1976). 2008;33(24):2630-6.
31. Cuddihy LA, Swiercz M, Antonacci CL, Betz R, Antonacci MD. Predicting the major coronal curve angle on initial standing x-rays based on intraoperative correction during anterior scoliosis correction and vertebral body tethering: comparison of single vs. double cord/screw constructs. 28th International Meeting on Advanced Spine Techniques; April 23-25, 2021 (Virtual).
32. Coe JD, Arlet V, Donaldson W, Berven S, Hanson DS, Mudiyam R, et al. Complications in spinal fusion for adolescent idiopathic scoliosis in the new millennium. A report of the Scoliosis Research Society Morbidity and Mortality Committee. Spine (Phila Pa 1976). 2006;31(3):345-9.
33. Vigneswaran HT, Grabel ZJ, Eberson CP, Palumbo MA, Daniels AH. Surgical treatment of adolescent idiopathic scoliosis in the United States from 1997 to 2012: an analysis of 20,346 patients. J Neurosurg Pediatr. 2015;16(3):322-8. http://dx.doi.org/10.3171/2015.3.PEDS14649.
34. Reames DL, Smith JS, Fu KM, Polly DW Jr, Ames CP, Berven SH, et al. Complications in the surgical treatment of 19,360 cases of pediatric scoliosis: a review of the Scoliosis Research Society Morbidity and Mortality database. Spine (Phila Pa 1976). 2011;36(18):1484-91. http://dx.doi.org/10.1097/BRS.0b013e3181f3a326.
35. Carreon LY, Puno RM, Lenke LG, Richards BS, Sucato DJ, Emans JB, et al. Non-neurologic complications following surgery for adolescent idiopathic scoliosis. J Bone Joint Surg Am. 2007;89(11):2427-32. http://dx.doi.org/10.2106/JBJS.F.00995.
36. Lykissas MG, Jain VV, Nathan ST, Pawar V, Eismann EA, Sturm PF, et al. Mid- to long-term outcomes in adolescent idiopathic scoliosis after instrumented posterior spinal fusion: a meta-analysis. Spine (Phila Pa 1976). 2013;38(2):E113-9. http://dx.doi.org/10.1097/BRS.0b013e31827ae3d0.