Nephron progenitor cells in development and renal disease: Renal Hypoplasia, Wilms Tumour and recovery from Acute Kidney Injury

Main Article Content

Kyle Dickinson Chantal Bernard Diana Iglesias Paul Goodyer

Abstract

The emergence of nephron progenitor cells (NPCs) in early embryonic life leads to the many rounds of nephrogenesis that result in a richly endowed kidney by the end of gestation. A delicate balance between NPC differentiation and self-renewal must be maintained to guarantee optimal nephron endowment. Genetic errors which disturb NPC cell fate can result in premature NPC depletion and renal hypoplasia/dysplasia or permit the β-catenin mutations that accompany malignant transformation into a Wilms tumor. Retention of a small population of NPCs scattered throughout the adult kidney are important for recovery from acute tubular injury later in life. In this review, we track the origin and characteristics of NPC, describe the phase of NPC priming prior to nephron induction and describe NPC differentiation during nephrogenesis. We then cover the role of NPC in human renal disease, including mechanisms by which quiescent NPCs repair the injured adult kidney and the human diseases linked to dysfunction of NPCs.

Article Details

How to Cite
DICKINSON, Kyle et al. Nephron progenitor cells in development and renal disease: Renal Hypoplasia, Wilms Tumour and recovery from Acute Kidney Injury. Medical Research Archives, [S.l.], v. 10, n. 1, jan. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2650>. Date accessed: 28 nov. 2022. doi: https://doi.org/10.18103/mra.v10i1.2650.
Section
Research Articles

References

1. Reimschuessel R. A fish model of renal regeneration and development. ILAR J. 2001;42(4):285-91.
2. Bertram JF, Douglas-Denton RN, Diouf B, Hughson MD, Hoy WE. Human nephron number: implications for health and disease. Pediatric nephrology (Berlin, Germany). 2011;26(9):1529-33.
3. Angelotti ML, Ronconi E, Ballerini L, Peired A, Mazzinghi B, Sagrinati C, et al. Characterization of renal progenitors committed toward tubular lineage and their regenerative potential in renal tubular injury. Stem Cells. 2012;30(8):1714-25.
4. Lazzeri E, Angelotti ML, Peired A, Conte C, Marschner JA, Maggi L, et al. Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nature communications. 2018;9(1):1344.
5. Kojima Y, Tam OH, Tam PP. Timing of developmental events in the early mouse embryo. Semin Cell Dev Biol. 2014;34:65-75.
6. Di Giovanni V, Alday A, Chi L, Mishina Y, Rosenblum ND. <em>Alk3</em> controls nephron number and androgen production via lineage-specific effects in intermediate mesoderm. Development (Cambridge, England). 2011;138(13):2717.
7. Wang Q, Lan Y, Cho ES, Maltby KM, Jiang R. Odd-skipped related 1 (Odd 1) is an essential regulator of heart and urogenital development. Developmental biology. 2005;288(2):582-94.
8. James RG, Kamei CN, Wang Q, Jiang R, Schultheiss TM. Odd-skipped related 1 is required for development of the metanephric kidney and regulates formation and differentiation of kidney precursor cells. Development (Cambridge, England). 2006;133(15):2995-3004.
9. Lan Y, Liu H, Ovitt CE, Jiang R. Generation of Osr1 conditional mutant mice. Genesis (New York, NY : 2000). 2011;49(5):419-22.
10. Bouchard M, Souabni A, Mandler M, Neubuser A, Busslinger M. Nephric lineage specification by Pax2 and Pax8. Genes & development. 2002;16(22):2958-70.
11. Grote D, Souabni A, Busslinger M, Bouchard M. Pax2/8-regulated Gata3 expression is necessary for morphogenesis and guidance of the nephric duct in the developing kidney. Development (Cambridge, England). 2006;133(1):53.
12. Rackley RR, Flenniken AM, Kuriyan NP, Kessler PM, Stoler MH, Williams BR. Expression of the Wilms' tumor suppressor gene WT1 during mouse embryogenesis. Cell Growth Differ. 1993;4(12):1023-31.
13. Schedl A, Hastie N. Multiple roles for the Wilms' tumour suppressor gene, WT1 in genitourinary development. Molecular and cellular endocrinology. 1998;140(1-2):65-9.
14. Towers PR, Woolf AS, Hardman P. Glial cell line-derived neurotrophic factor stimulates ureteric bud outgrowth and enhances survival of ureteric bud cells in vitro. Exp Nephrol. 1998;6(4):337-51.
15. Dressler GR. Advances in early kidney specification, development and patterning. Development (Cambridge, England). 2009;136(23):3863.
16. Mugford JW, Yu J, Kobayashi A, McMahon AP. High-resolution gene expression analysis of the developing mouse kidney defines novel cellular compartments within the nephron progenitor population. Developmental biology. 2009;333(2):312-23.
17. Boyle S, Misfeldt A, Chandler KJ, Deal KK, Southard-Smith EM, Mortlock DP, et al. Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia. Developmental biology. 2008;313(1):234-45.
18. Boyle S, Shioda T, Perantoni AO, de Caestecker M. Cited1 and Cited2 are differentially expressed in the developing kidney but are not required for nephrogenesis. Developmental dynamics : an official publication of the American Association of Anatomists. 2007;236(8):2321-30.
19. Lovvorn HN, Westrup J, Opperman S, Boyle S, Shi G, Anderson J, et al. CITED1 expression in Wilms' tumor and embryonic kidney. Neoplasia. 2007;9(7):589-600.
20. Kobayashi A, Valerius MT, Mugford JW, Carroll TJ, Self M, Oliver G, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. Cell stem cell. 2008;3(2):169-81.
21. Park JS, Ma W, O'Brien LL, Chung E, Guo JJ, Cheng JG, et al. Six2 and Wnt regulate self-renewal and commitment of nephron progenitors through shared gene regulatory networks. Developmental cell. 2012;23(3):637-51.
22. Self M, Lagutin OV, Bowling B, Hendrix J, Cai Y, Dressler GR, et al. Six2 is required for suppression of nephrogenesis and progenitor renewal in the developing kidney. Embo j. 2006;25(21):5214-28.
23. Brown AC, Muthukrishnan SD, Guay JA, Adams DC, Schafer DA, Fetting JL, et al. Role for compartmentalization in nephron progenitor differentiation. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(12):4640-5.
24. Yu Y, Deng P, Yu B, Szymanski JM, Aghaloo T, Hong C, et al. Inhibition of EZH2 Promotes Human Embryonic Stem Cell Differentiation into Mesoderm by Reducing H3K27me3. Stem Cell Reports. 2017;9(3):752-61.
25. Ezhkova E, Pasolli HA, Parker JS, Stokes N, Su IH, Hannon G, et al. Ezh2 orchestrates gene expression for the stepwise differentiation of tissue-specific stem cells. Cell. 2009;136(6):1122-35.
26. Akpa MM, Iglesias D, Chu L, Thiébaut A, Jentoft I, Hammond L, et al. Wilms Tumor Suppressor, WT1, Cooperates with MicroRNA-26a and MicroRNA-101 to Suppress Translation of the Polycomb Protein, EZH2, in Mesenchymal Stem Cells. The Journal of biological chemistry. 2016;291(8):3785-95.
27. Akpa MM, Iglesias DM, Chu LL, Cybulsky M, Bravi C, Goodyer PR. Wilms tumor suppressor, WT1, suppresses epigenetic silencing of the beta-catenin gene. The Journal of biological chemistry. 2015;290(4):2279-88.
28. Carroll TJ, Park JS, Hayashi S, Majumdar A, McMahon AP. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system. Developmental cell. 2005;9(2):283-92.
29. Dickinson KK, Hammond LC, Karner CM, Hastie ND, Carroll TJ, Goodyer P. Molecular determinants of WNT9b responsiveness in nephron progenitor cells. PloS one. 2019;14(4):e0215139.
30. Xu J, Wong EY, Cheng C, Li J, Sharkar MT, Xu CY, et al. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Developmental cell. 2014;31(4):434-47.
31. Kanda S, Tanigawa S, Ohmori T, Taguchi A, Kudo K, Suzuki Y, et al. Sall1 maintains nephron progenitors and nascent nephrons by acting as both an activator and a repressor. Journal of the American Society of Nephrology : JASN. 2014;25(11):2584-95.
32. Vidal VPI, Gregoire E, Szenker-Ravi E, Leushacke M, Reversade B, Chaboissier MC, et al. Paracrine and autocrine R-spondin signalling is essential for the maintenance and differentiation of renal stem cells. bioRxiv. 2019:859959.
33. Iglesias DM, Akpa MM, Goodyer P. Priming the renal progenitor cell. Pediatric nephrology (Berlin, Germany). 2014;29(4):705-10.
34. Bridgewater D, Cox B, Cain J, Lau A, Athaide V, Gill PS, et al. Canonical WNT/beta-catenin signaling is required for ureteric branching. Developmental biology. 2008;317(1):83-94.
35. Sarin S, Boivin F, Li A, Lim J, Svajger B, Rosenblum ND, et al. β-Catenin overexpression in the metanephric mesenchyme leads to renal dysplasia genesis via cell-autonomous and non-cell-autonomous mechanisms. Am J Pathol. 2014;184(5):1395-410.
36. Ramalingam H, Fessler AR, Das A, Valerius MT, Basta J, Robbins L, et al. Disparate levels of beta-catenin activity determine nephron progenitor cell fate. Developmental biology. 2018;440(1):13-21.
37. Cain JE, Di Giovanni V, Smeeton J, Rosenblum ND. Genetics of renal hypoplasia: insights into the mechanisms controlling nephron endowment. Pediatr Res. 2010;68(2):91-8.
38. O'Brien LL, Combes AN, Short KM, Lindström NO, Whitney PH, Cullen-McEwen LA, et al. Wnt11 directs nephron progenitor polarity and motile behavior ultimately determining nephron endowment. Elife. 2018;7.
39. Guo Q, Kim A, Li B, Ransick A, Bugacov H, Chen X, et al. A β-catenin-driven switch in TCF/LEF transcription factor binding to DNA target sites promotes commitment of mammalian nephron progenitor cells. Elife. 2021;10.
40. O'Hara RE, Arsenault MG, Esparza Gonzalez BP, Patriquen A, Hartwig S. Three Optimized Methods for In Situ Quantification of Progenitor Cell Proliferation in Embryonic Kidneys Using BrdU, EdU, and PCNA. Can J Kidney Health Dis. 2019;6:2054358119871936-.
41. Kurnit DM, Steele MW, Pinsky L, Dibbins A. Autosomal dominant transmission of a syndrome of anal, ear, renal, and radial congenital malformations. J Pediatr. 1978;93(2):270-3.
42. Reardon W, Casserly LF, Birkenhäger R, Kohlhase J. Kidney failure in Townes-Brocks syndrome: an under recognized phenomenon? Am J Med Genet A. 2007;143a(21):2588-91.
43. Botzenhart EM, Bartalini G, Blair E, Brady AF, Elmslie F, Chong KL, et al. Townes-Brocks syndrome: twenty novel SALL1 mutations in sporadic and familial cases and refinement of the SALL1 hot spot region. Hum Mutat. 2007;28(2):204-5.
44. Faguer S, Pillet A, Chassaing N, Merhenberger M, Bernadet-Monrozies P, Guitard J, et al. Nephropathy in Townes-Brocks syndrome (SALL1 mutation): imaging and pathological findings in adulthood. Nephrol Dial Transplant. 2009;24(4):1341-5.
45. Weber S, Moriniere V, Knüppel T, Charbit M, Dusek J, Ghiggeri GM, et al. Prevalence of mutations in renal developmental genes in children with renal hypodysplasia: results of the ESCAPE study. Journal of the American Society of Nephrology : JASN. 2006;17(10):2864-70.
46. Nixon TRW, Richards A, Towns LK, Fuller G, Abbs S, Alexander P, et al. Bone morphogenetic protein 4 (BMP4) loss-of-function variant associated with autosomal dominant Stickler syndrome and renal dysplasia. Eur J Hum Genet. 2019;27(3):369-77.
47. Weber S, Taylor JC, Winyard P, Baker KF, Sullivan-Brown J, Schild R, et al. SIX2 and BMP4 mutations associate with anomalous kidney development. Journal of the American Society of Nephrology : JASN. 2008;19(5):891-903.
48. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, et al. Clustering of mutations responsible for branchio-oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1. Human molecular genetics. 1997;6(13):2247-55.
49. Chang EH, Menezes M, Meyer NC, Cucci RA, Vervoort VS, Schwartz CE, et al. Branchio-oto-renal syndrome: the mutation spectrum in EYA1 and its phenotypic consequences. Hum Mutat. 2004;23(6):582-9.
50. Clarke JC, Honey EM, Bekker E, Snyman LC, Raymond RM, Jr., Lord C, et al. A novel nonsense mutation in the EYA1 gene associated with branchio-oto-renal/branchiootic syndrome in an Afrikaner kindred. Clin Genet. 2006;70(1):63-7.
51. Fukuda S, Kuroda T, Chida E, Shimizu R, Usami S, Koda E, et al. A family affected by branchio-oto syndrome with EYA1 mutations. Auris Nasus Larynx. 2001;28 Suppl:S7-11.
52. Gigante M, d'Altilia M, Montemurno E, Diella S, Bruno F, Netti GS, et al. Branchio-Oto-Renal Syndrome (BOR) associated with focal glomerulosclerosis in a patient with a novel EYA1 splice site mutation. BMC Nephrol. 2013;14:60.
53. Li G, Shen Q, Sun L, Liu H, An Y, Xu H. A de novo and novel mutation in the EYA1 gene in a Chinese child with branchio-oto-renal syndrome. Intractable Rare Dis Res. 2018;7(1):42-5.
54. Kause F, Reutter H, Marsch F, Thiele H, Altmüller J, Ludwig M, et al. Whole exome sequencing identifies a mutation in EYA1 and GLI3 in a patient with branchio‑otic syndrome and esophageal atresia: Coincidence or a digenic mode of inheritance? Mol Med Rep. 2018;17(2):3200-5.
55. Kim SH, Shin JH, Yeo CK, Chang SH, Park SY, Cho EH, et al. Identification of a novel mutation in the EYA1 gene in a Korean family with branchio-oto-renal (BOR) syndrome. Int J Pediatr Otorhinolaryngol. 2005;69(8):1123-8.
56. Krug P, Morinière V, Marlin S, Koubi V, Gabriel HD, Colin E, et al. Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio-oto-renal syndrome calls into question the pathogenic role of SIX5 mutations. Hum Mutat. 2011;32(2):183-90.
57. Kumar S, Deffenbacher K, Cremers CW, Van Camp G, Kimberling WJ. Branchio-oto-renal syndrome: identification of novel mutations, molecular characterization, mutation distribution, and prospects for genetic testing. Genet Test. 1997;1(4):243-51.
58. Kumar S, Kimberling WJ, Weston MD, Schaefer BG, Berg MA, Marres HA, et al. Identification of three novel mutations in human EYA1 protein associated with branchio-oto-renal syndrome. Hum Mutat. 1998;11(6):443-9.
59. Mercer C, Gilbert R, Loughlin S, Foulds N. Patient with an EYA1 mutation with features of branchio-oto-renal and oto-facio-cervical syndrome. Clin Dysmorphol. 2006;15(4):211-2.
60. Morisada N, Rendtorff ND, Nozu K, Morishita T, Miyakawa T, Matsumoto T, et al. Branchio-oto-renal syndrome caused by partial EYA1 deletion due to LINE-1 insertion. Pediatric nephrology (Berlin, Germany). 2010;25(7):1343-8.
61. Namba A, Abe S, Shinkawa H, Kimberling WJ, Usami SI. Genetic features of hearing loss associated with ear anomalies: PDS and EYA1 mutation analysis. J Hum Genet. 2001;46(9):518-21.
62. Nardi E, Palermo A, Cusimano P, Mulè G, Cerasola G. Young woman with branchio-oto-renal syndrome and a novel mutation in the EYA-1 gene. Clin Nephrol. 2011;76(4):330-3.
63. Okada M, Fujimaru R, Morimoto N, Satomura K, Kaku Y, Tsuzuki K, et al. EYA1 and SIX1 gene mutations in Japanese patients with branchio-oto-renal (BOR) syndrome and related conditions. Pediatric nephrology (Berlin, Germany). 2006;21(4):475-81.
64. Olavarrieta L, Morales-Angulo C, del Castillo I, Moreno F, Moreno-Pelayo MA. Stickler and branchio-oto-renal syndromes in a patient with mutations in EYA1 and COL2A1 genes. Clin Genet. 2008;73(3):262-7.
65. Orten DJ, Fischer SM, Sorensen JL, Radhakrishna U, Cremers CW, Marres HA, et al. Branchio-oto-renal syndrome (BOR): novel mutations in the EYA1 gene, and a review of the mutational genetics of BOR. Hum Mutat. 2008;29(4):537-44.
66. Rickard S, Boxer M, Trompeter R, Bitner-Glindzicz M. Importance of clinical evaluation and molecular testing in the branchio-oto-renal (BOR) syndrome and overlapping phenotypes. J Med Genet. 2000;37(8):623-7.
67. Sanggaard KM, Rendtorff ND, Kjaer KW, Eiberg H, Johnsen T, Gimsing S, et al. Branchio-oto-renal syndrome: detection of EYA1 and SIX1 mutations in five out of six Danish families by combining linkage, MLPA and sequencing analyses. Eur J Hum Genet. 2007;15(11):1121-31.
68. Spahiu L, Merovci B, Ismaili Jaha V, Batalli Këpuska A, Jashari H. Case report of a novel mutation of the EYA1 gene in a patient with branchio-oto-renal syndrome. Balkan J Med Genet. 2016;19(2):91-4.
69. Stockley TL, Mendoza-Londono R, Propst EJ, Sodhi S, Dupuis L, Papsin BC. A recurrent EYA1 mutation causing alternative RNA splicing in branchio-oto-renal syndrome: implications for molecular diagnostics and disease mechanism. Am J Med Genet A. 2009;149a(3):322-7.
70. Usami S, Abe S, Shinkawa H, Deffenbacher K, Kumar S, Kimberling WJ. EYA1 nonsense mutation in a Japanese branchio-oto-renal syndrome family. J Hum Genet. 1999;44(4):261-5.
71. Vincent C, Kalatzis V, Abdelhak S, Chaib H, Compain S, Helias J, et al. BOR and BO syndromes are allelic defects of EYA1. Eur J Hum Genet. 1997;5(4):242-6.
72. Wang YG, Sun SP, Qiu YL, Xing QH, Lu W. A novel mutation in EYA1 in a Chinese family with Branchio-oto-renal syndrome. BMC Med Genet. 2018;19(1):139.
73. Zhang Z, Iglesias D, Eliopoulos N, El Kares R, Chu L, Romagnani P, et al. A variant OSR1 allele which disturbs OSR1 mRNA expression in renal progenitor cells is associated with reduction of newborn kidney size and function. Human molecular genetics. 2011;20(21):4167-74.
74. Salerno A, Kohlhase J, Kaplan BS. Townes-Brocks syndrome and renal dysplasia: a novel mutation in the SALL1 gene. Pediatric nephrology (Berlin, Germany). 2000;14(1):25-8.
75. Ruf RG, Xu PX, Silvius D, Otto EA, Beekmann F, Muerb UT, et al. SIX1 mutations cause branchio-oto-renal syndrome by disruption of EYA1-SIX1-DNA complexes. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(21):8090-5.
76. Kochhar A, Orten DJ, Sorensen JL, Fischer SM, Cremers CW, Kimberling WJ, et al. SIX1 mutation screening in 247 branchio-oto-renal syndrome families: a recurrent missense mutation associated with BOR. Hum Mutat. 2008;29(4):565.
77. Lemire G, Zheng B, Ediae GU, Zou R, Bhola PT, Chisholm C, et al. Homozygous WNT9B variants in two families with bilateral renal agenesis/hypoplasia/dysplasia. Am J Med Genet A. 2021;185(10):3005-11.
78. Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nat Genet. 1997;15(2):157-64.
79. Hoskins BE, Cramer CH, Silvius D, Zou D, Raymond RM, Orten DJ, et al. Transcription factor SIX5 is mutated in patients with branchio-oto-renal syndrome. Am J Hum Genet. 2007;80(4):800-4.
80. Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D. Six1 is required for the early organogenesis of mammalian kidney. Development (Cambridge, England). 2003;130(14):3085-94.
81. Lozić B, Krželj V, Kuzmić-Prusac I, Kuzmanić-Šamija R, Čapkun V, Lasan R, et al. The OSR1 rs12329305 polymorphism contributes to the development of congenital malformations in cases of stillborn/neonatal death. Med Sci Monit. 2014;20:1531-8.
82. Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I. Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest. 2000;105(7):863-73.
83. Miyazaki Y, Oshima K, Fogo A, Ichikawa I. Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney international. 2003;63(3):835-44.
84. Muto R, Yamamori S, Ohashi H, Osawa M. Prediction by FISH analysis of the occurrence of Wilms tumor in aniridia patients. Am J Med Genet. 2002;108(4):285-9.
85. Ruteshouser EC, Robinson SM, Huff V. Wilms tumor genetics: mutations in WT1, WTX, and CTNNB1 account for only about one-third of tumors. Genes Chromosomes Cancer. 2008;47(6):461-70.
86. Park S, Bernard A, Bove KE, Sens DA, Hazen-Martin DJ, Garvin AJ, et al. Inactivation of WT1 in nephrogenic rests, genetic precursors to Wilms' tumour. Nat Genet. 1993;5(4):363-7.
87. Trink A, Kanter I, Pode-Shakked N, Urbach A, Dekel B, Kalisky T. Geometry of Gene Expression Space of Wilms' Tumors From Human Patients. Neoplasia. 2018;20(8):871-81.
88. Maiti S, Alam R, Amos CI, Huff V. Frequent association of beta-catenin and WT1 mutations in Wilms tumors. Cancer Res. 2000;60(22):6288-92.
89. Kusafuka T, Miao J, Kuroda S, Udatsu Y, Yoneda A. Codon 45 of the beta-catenin gene, a specific mutational target site of Wilms' tumor. Int J Mol Med. 2002;10(4):395-9.
90. Amit S, Hatzubai A, Birman Y, Andersen JS, Ben-Shushan E, Mann M, et al. Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes & development. 2002;16(9):1066-76.
91. Koesters R, Niggli F, von Knebel Doeberitz M, Stallmach T. Nuclear accumulation of beta-catenin protein in Wilms' tumours. J Pathol. 2003;199(1):68-76.
92. Fukuzawa R, Heathcott RW, More HE, Reeve AE. Sequential WT1 and CTNNB1 mutations and alterations of beta-catenin localisation in intralobar nephrogenic rests and associated Wilms tumours: two case studies. J Clin Pathol. 2007;60(9):1013-6.
93. Huang L, Mokkapati S, Hu Q, Ruteshouser EC, Hicks MJ, Huff V. Nephron Progenitor But Not Stromal Progenitor Cells Give Rise to Wilms Tumors in Mouse Models with β-Catenin Activation or Wt1 Ablation and Igf2 Upregulation. Neoplasia. 2016;18(2):71-81.
94. Uschkereit C, Perez N, de Torres C, Küff M, Mora J, Royer-Pokora B. Different CTNNB1 mutations as molecular genetic proof for the independent origin of four Wilms tumours in a patient with a novel germ line WT1 mutation. J Med Genet. 2007;44(6):393-6.
95. Duhme C, Busch M, Heine E, de Torres C, Mora J, Royer-Pokora B. WT1-Mutant Wilms Tumor Progression Is Associated With Diverting Clonal Mutations of CTNNB1. J Pediatr Hematol Oncol. 2021;43(2):e180-e3.
96. Su MC, Huang WC, Lien HC. Beta-catenin expression and mutation in adult and pediatric Wilms' tumors. Apmis. 2008;116(9):771-8.
97. Poley JW, Wagner A, Hoogmans MM, Menko FH, Tops C, Kros JM, et al. Biallelic germline mutations of mismatch-repair genes: a possible cause for multiple pediatric malignancies. Cancer. 2007;109(11):2349-56.
98. Li SKH, Martin A. Mismatch Repair and Colon Cancer: Mechanisms and Therapies Explored. Trends Mol Med. 2016;22(4):274-89.
99. Reid S, Renwick A, Seal S, Baskcomb L, Barfoot R, Jayatilake H, et al. Biallelic BRCA2 mutations are associated with multiple malignancies in childhood including familial Wilms tumour. J Med Genet. 2005;42(2):147-51.
100. Sagrinati C, Netti GS, Mazzinghi B, Lazzeri E, Liotta F, Frosali F, et al. Isolation and characterization of multipotent progenitor cells from the Bowman's capsule of adult human kidneys. Journal of the American Society of Nephrology : JASN. 2006;17(9):2443-56.
101. Lindgren D, Boström AK, Nilsson K, Hansson J, Sjölund J, Möller C, et al. Isolation and characterization of progenitor-like cells from human renal proximal tubules. Am J Pathol. 2011;178(2):828-37.
102. Muto Y, Wilson PC, Ledru N, Wu H, Dimke H, Waikar SS, et al. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nature communications. 2021;12(1):2190.
103. Lazzeri E, Crescioli C, Ronconi E, Mazzinghi B, Sagrinati C, Netti GS, et al. Regenerative potential of embryonic renal multipotent progenitors in acute renal failure. Journal of the American Society of Nephrology : JASN. 2007;18(12):3128-38.
104. Smeets B, Boor P, Dijkman H, Sharma SV, Jirak P, Mooren F, et al. Proximal tubular cells contain a phenotypically distinct, scattered cell population involved in tubular regeneration. J Pathol. 2013;229(5):645-59.
105. Zhang Z, Iglesias DM, Corsini R, Chu L, Goodyer P. WNT/β-Catenin Signaling Is Required for Integration of CD24+ Renal Progenitor Cells into Glycerol-Damaged Adult Renal Tubules. Stem cells international. 2015;2015:391043.
106. Morigi M, Introna M, Imberti B, Corna D, Abbate M, Rota C, et al. Human bone marrow mesenchymal stem cells accelerate recovery of acute renal injury and prolong survival in mice. Stem Cells. 2008;26(8):2075-82.
107. Rota C, Imberti B, Pozzobon M, Piccoli M, De Coppi P, Atala A, et al. Human amniotic fluid stem cell preconditioning improves their regenerative potential. Stem Cells Dev. 2012;21(11):1911-23.
108. Tian SF, Jiang ZZ, Liu YM, Niu X, Hu B, Guo SC, et al. Human urine-derived stem cells contribute to the repair of ischemic acute kidney injury in rats. Mol Med Rep. 2017;16(4):5541-8.
109. Sun X, Meng H, Wan W, Xie M, Wen C. Application potential of stem/progenitor cell-derived extracellular vesicles in renal diseases. Stem Cell Research & Therapy. 2019;10(1):8.
110. Zhang C, George SK, Wu R, Thakker PU, Abolbashari M, Kim TH, et al. Reno-protection of Urine-derived Stem Cells in A Chronic Kidney Disease Rat Model Induced by Renal Ischemia and Nephrotoxicity. Int J Biol Sci. 2020;16(3):435-46.
111. Li X, Liao J, Su X, Li W, Bi Z, Wang J, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1. Theranostics. 2020;10(21):9561-78.
112. Xiong G, Tao L, Ma WJ, Gong MJ, Zhao L, Shen LJ, et al. Urine-derived stem cells for the therapy of diabetic nephropathy mouse model. Eur Rev Med Pharmacol Sci. 2020;24(3):1316-24.
113. Arcolino FO, Zia S, Held K, Papadimitriou E, Theunis K, Bussolati B, et al. Urine of Preterm Neonates as a Novel Source of Kidney Progenitor Cells. Journal of the American Society of Nephrology : JASN. 2016;27(9):2762-70.