Deactivation by S-Glutathionylation overrules activation by PRMT1-dependent asymmetrical di-methylation in PFKFB3

Main Article Content

Jeong-Do Kim Young-Sun Yim Michal Brylinski Raafat El-Maghrabi Yong Lee


To understand PFKFB3 control by covalent modifications, the structure/function effect of protein arginine methyl transferase 1-dependent asymmetric di-methylations at Arg131 and Arg134 (N-CH3) and its relationship to S-glutathionylation at Cys206 (S-Gsh) was investigated. Distinctly from the report that N-CH3 is for protection of PFKFB3 from the APC/C-Cdh-mediated polyubiquitination and proteolysis, an increase in the activity for Fru-2,6-P2 production was shown from a molecular simulation and in-vitro tests. The simulation suggested that N-CH3 would uncouple the Fru-6-P entry turn (-130TRERRH-) from its coupling to the p-helix (-204DKCDRD-) by disabling the interaction between Arg131/134 and Asp207. The uncoupling consequently is likely to facilitate the Fru-6-P binding by enhancing the conformational flexibility.

Confirming the simulation, N-CH3 was shown to cause a 5-fold increase in the specific activity (kcat/Km) mostly through a 4-fold decrease in Kms for Fru-6-P. A similar extent of activation was induced by Asp207àA mutagenesis, which disables the coupling, while the activation by N-CH3 was almost abolished by Arg131àA mutagenesis. More interestingly, PFKFB3 with N-CH3 could be additionally S-glutathionylated at Cys206, when oxidative stress is elevated. When modified by both N-CH3 and S-Gsh, the activity was decreased, as if there was no N-CH3 at all, suggesting that the deactivation completely overrules the activation.

When HeLa cells were treated for the dual modifications of PFKFB3, the overruling deactivation effect of S-Gsh was prevalent, causing decreases in Fru-2,6-P2 levels and increases in glycolytic flux redirected to the pentose phosphate pathway. As a result, the levels of NADPH and reduced glutathione were markedly elevated, enhancing cell viability under the conditions of elevated oxidative stress. Altogether, it is suggested that the functional effect of S-Gsh, which represents a mechanism for survival under detrimental oxidative stress, dominates over the effect of N-CH3, which has been suggested as a mechanism for growth. 

Article Details

How to Cite
KIM, Jeong-Do et al. Deactivation by S-Glutathionylation overrules activation by PRMT1-dependent asymmetrical di-methylation in PFKFB3. Medical Research Archives, [S.l.], v. 10, n. 1, jan. 2022. ISSN 2375-1924. Available at: <>. Date accessed: 28 nov. 2022. doi:
Research Articles


1. Chesney J, Mitchell R, Benigni F, et al. An inducible gene product for 6-phosphofructo-2-kinase with an AU-rich instability element: role in tumor cell glycolysis and the Warburg effect. Proc Natl Acad Sci U S A. Mar 16 1999;96(6):3047-52.
2. Franklin DA, He Y, Leslie PL, et al. p53 coordinates DNA repair with nucleotide synthesis by suppressing PFKFB3 expression and promoting the pentose phosphate pathway. Sci Rep. Nov 30 2016;6:38067. doi:10.1038/srep38067
3. Branco C, Johnson RS. To PFKFB3 or Not to PFKFB3, That Is the Question. Cancer Cell. Dec 12 2016;30(6):831. doi:10.1016/j.ccell.2016.11.007
4. Ge X, Lyu P, Cao Z, et al. Overexpression of miR-206 suppresses glycolysis, proliferation and migration in breast cancer cells via PFKFB3 targeting. Biochem Biophys Res Commun. Aug 07 2015;463(4):1115-21. doi:10.1016/j.bbrc.2015.06.068
5. Calvo MN, Bartrons R, Castano E, Perales JC, Navarro-Sabate A, Manzano A. PFKFB3 gene silencing decreases glycolysis, induces cell-cycle delay and inhibits anchorage-independent growth in HeLa cells. FEBS Lett. May 29 2006;580(13):3308-14. doi:10.1016/j.febslet.2006.04.093
6. Atsumi T, Nishio T, Niwa H, et al. Expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase/PFKFB3 isoforms in adipocytes and their potential role in glycolytic regulation. Diabetes. Dec 2005;54(12):3349-57.
7. Minchenko A, Leshchinsky I, Opentanova I, et al. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect. J Biol Chem. Feb 22 2002;277(8):6183-7.
8. Atsumi T, Chesney J, Metz C, et al. High expression of inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (iPFK-2; PFKFB3) in human cancers. Cancer Res. Oct 15 2002;62(20):5881-7.
9. Depre C, Veitch K, Hue L. Role of fructose 2,6-bisphosphate in the control of glycolysis. Stimulation of glycogen synthesis by lactate in the isolated working rat heart. Acta Cardiol. 1993;48(1):147-64.
10. Pilkis SJ, Granner, D.K. . Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Ann Rev Physiol. 1992;54:885-909.
11. Ogush S, Lawson JW, Dobson GP, Veech RL, Uyeda K. A new transient activator of phosphofructokinase during initiation of rapid glycolysis in brain. J Biol Chem. Jul 5 1990;265(19):10943-9.
12. Pilkis SJ, El-Maghrabi MR, Claus TH. Hormonal regulation of hepatic gluconeogenesis and glycolysis. . Ann Rev Biochem. 1988;55:755-783.
13. Rousseau GG, Hue L. Mammalian 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase: a bifunctional enzyme that controls glycolysis. . Prog Nucl Acid Res Mol Biol. 1993;45:99-127.
14. Pilkis SJ, Claus TH, Kurland IJ, Lange AJ. 6-phosphofructo-2-kinase/ fructose-2,6-bisphosphatase: A metabolic signaling enzyme. Annu Rev Biochem. 1995;64:799-835.
15. El-Maghrabi MR, Noto F, Wu N, Manes N. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: suiting structure to need, in a family of tissue-specific enzymes. Curr Opin Clin Nutr Metab Care. Sep 2001;4(5):411-8.
16. Yalcin A, Clem BF, Imbert-Fernandez Y, et al. 6-Phosphofructo-2-kinase (PFKFB3) promotes cell cycle progression and suppresses apoptosis via Cdk1-mediated phosphorylation of p27. Cell Death Dis. 2014;5:e1337. doi:10.1038/cddis.2014.292
17. Verbon EH, Post JA, Boonstra J. The influence of reactive oxygen species on cell cycle progression in mammalian cells. Review. Gene. Dec 10 2012;511(1):1-6. doi:10.1016/j.gene.2012.08.038
18. Boonstra J, Post JA. Molecular events associated with reactive oxygen species and cell cycle progression in mammalian cells. Review. Gene. Aug 4 2004;337:1-13. doi:10.1016/j.gene.2004.04.032
19. Perez JX, Roig T, Manzano A, et al. Over expression of fructose-2,6-bisphosphatase decreases glycolysis and cell cycle progression. Am J Physiol Cell Physiol. 2000;279:C1359-C1364.
20. Cantelmo AR, Conradi LC, Brajic A, et al. Inhibition of the Glycolytic Activator PFKFB3 in Endothelium Induces Tumor Vessel Normalization, Impairs Metastasis, and Improves Chemotherapy. Cancer Cell. Dec 12 2016;30(6):968-985. doi:10.1016/j.ccell.2016.10.006
21. De Bock K, Georgiadou M, Schoors S, et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. Aug 1 2013;154(3):651-63. doi:10.1016/j.cell.2013.06.037
22. Garber K. Energy boost: the Warburg effect returns in a new theory of cancer. J Natl Cancer Inst. Dec 15 2004;96(24):1805-6.
23. Zhu W, Ye L, Zhang J, et al. PFK15, a Small Molecule Inhibitor of PFKFB3, Induces Cell Cycle Arrest, Apoptosis and Inhibits Invasion in Gastric Cancer. PLoS One. 2016;11(9):e0163768. doi:10.1371/journal.pone.0163768
24. Xu Y, An X, Guo X, et al. Endothelial PFKFB3 plays a critical role in angiogenesis. Arterioscler Thromb Vasc Biol. Jun 2014;34(6):1231-9. doi:10.1161/ATVBAHA.113.303041
25. Boyd S, Brookfield JL, Critchlow SE, et al. Structure-Based Design of Potent and Selective Inhibitors of the Metabolic Kinase PFKFB3. J Med Chem. Apr 23 2015;58(8):3611-25. doi:10.1021/acs.jmedchem.5b00352
26. Clem BF, O'Neal J, Tapolsky G, et al. Targeting 6-phosphofructo-2-kinase (PFKFB3) as a therapeutic strategy against cancer. Mol Cancer Ther. Aug 2013;12(8):1461-70. doi:10.1158/1535-7163.MCT-13-0097
27. Seo M, Kim JD, Neau D, Sehgal I, Lee YH. Structure-based development of small molecule PFKFB3 inhibitors: a framework for potential cancer therapeutic agents targeting the Warburg effect. PLoS One. 2011;6(9):e24179. doi:10.1371/journal.pone.0024179
28. Crochet RB, Cavalier MC, Seo M, et al. Investigating combinatorial approaches in virtual screening on human inducible 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3): a case study for small molecule kinases. Analytical biochemistry. Nov 1 2011;418(1):143-8. doi:10.1016/j.ab.2011.06.035
29. Reid MA, Lowman XH, Pan M, et al. IKKbeta promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3. Genes Dev. Aug 15 2016;30(16):1837-51. doi:10.1101/gad.287235.116
30. Bando H, Atsumi T, Nishio T, et al. Phosphorylation of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase/PFKFB3 family of glycolytic regulators in human cancer. Comparative Study. Clinical cancer research. Aug 15 2005;11(16):5784-92. doi:10.1158/1078-0432.CCR-05-0149
31. Rider MH, Bertrand L, Vertommen D, Michels PA, Rousseau GG, Hue L. 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: head-to-head with a bifunctional enzyme that controls glycolysis. Biochem J. Aug 1 2004;381(Pt 3):561-79.
32. Seo M, Lee YH. PFKFB3 regulates oxidative stress homeostasis via its S-glutathionylation in cancer. J Mol Biol. Feb 20 2014;426(4):830-42. doi:10.1016/j.jmb.2013.11.021
33. Tudzarova S, Colombo SL, Stoeber K, Carcamo S, Williams GH, Moncada S. Two ubiquitin ligases, APC/C-Cdh1 and SKP1-CUL1-F (SCF)-beta-TrCP, sequentially regulate glycolysis during the cell cycle. Research Support, Non-U.S. Gov't. Proceedings of the National Academy of Sciences of the United States of America. Mar 29 2011;108(13):5278-83. doi:10.1073/pnas.1102247108
34. Vizan P, Alcarraz-Vizan G, Diaz-Moralli S, Solovjeva ON, Frederiks WM, Cascante M. Modulation of pentose phosphate pathway during cell cycle progression in human colon adenocarcinoma cell line HT29. Research Support, Non-U.S. Gov't. International journal of cancer Journal international du cancer. Jun 15 2009;124(12):2789-96. doi:10.1002/ijc.24262
35. Kim SG, Cavalier M, El-Maghrabi MR, Lee YH. A direct substrate-substrate interaction found in the kinase domain of the bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Research Support, Non-U.S. Gov't. Journal of molecular biology. Jun 29 2007;370(1):14-26. doi:10.1016/j.jmb.2007.03.038
36. Kim SG, Manes NP, El-Maghrabi MR, Lee YH. Crystal structure of the hypoxia-inducible form of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFKFB3): a possible new target for cancer therapy. Research Support, Non-U.S. Gov't. The Journal of biological chemistry. Feb 3 2006;281(5):2939-44. doi:10.1074/jbc.M511019200
37. Boada J, Roig T, Perez X, et al. Cells overexpressing fructose-2,6-bisphosphatase showed enhanced pentose phosphate pathway flux and resistance to oxidative stress. Research Support, Non-U.S. Gov't. FEBS letters. Sep 1 2000;480(2-3):261-4.
38. Urner F, Sakkas D. Characterization of glycolysis and pentose phosphate pathway activity during sperm entry into the mouse oocyte. Research Support, Non-U.S. Gov't. Biology of reproduction. Apr 1999;60(4):973-8.
39. Israelsen WJ, Dayton TL, Davidson SM, et al. PKM2 Isoform-Specific Deletion Reveals a Differential Requirement for Pyruvate Kinase in Tumor Cells. Cell. Oct 10 2013;155(2):397-409. doi:10.1016/j.cell.2013.09.025
40. Anastasiou D, Poulogiannis G, Asara JM, et al. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science. Dec 2 2011;334(6060):1278-83. doi:10.1126/science.1211485
41. Yi W, Clark PM, Mason DE, et al. Phosphofructokinase 1 glycosylation regulates cell growth and metabolism. Science. Aug 24 2012;337(6097):975-80. doi:10.1126/science.1222278
42. Yamamoto T, Takano N, Ishiwata K, et al. Reduced methylation of PFKFB3 in cancer cells shunts glucose towards the pentose phosphate pathway. Nat Commun. Mar 17 2014;5:3480. doi:10.1038/ncomms4480
43. Morales Y, Nitzel DV, Price OM, et al. Redox Control of Protein Arginine Methyltransferase 1 (PRMT1) Activity. J Biol Chem. Jun 12 2015;290(24):14915-26. doi:10.1074/jbc.M115.651380
44. Lee YH, Li Y, Uyeda K, Hasemann CA. Tissue-specific structure/function differentiation of the liver isoform of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem. Jan 3 2003;278(1):523-30.
45. Moritz B, Striegel K, de Graaf AA, Sahm H. Changes of Pentose Phosphate Pathway Flux in Vivo in Corynebacterium glutamicum during Leucine-Limited Batch Cultivation as Determined from Intracellular Metabolite Concentration Measurements. Metabolic Engineering. 2002;4(4):295-305. doi:10.1006/mben.2002.0233
46. Bertrand L, Vertommen D, Depiereux E, Hue L, Rider MH, Feytmans E. Modelling the 2-kinase domain of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase on adenylate kinase. Biochem J. Feb 1 1997;321 ( Pt 3):615-21.
47. Adams PD, Afonine PV, Bunkoczi G, et al. The Phenix software for automated determination of macromolecular structures. Methods. Sep 2011;55(1):94-106. doi:10.1016/j.ymeth.2011.07.005
48. TA H. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. . J Comput Chem. 1996 17:490-519.
49. Yang Y, Bedford MT. Protein arginine methyltransferases and cancer. Nat Rev Cancer. Jan 2013;13(1):37-50. doi:10.1038/nrc3409
50. Ferron M, Denis M, Persello A, Rathagirishnan R, Lauzier B. Protein O-GlcNAcylation in Cardiac Pathologies: Past, Present, Future. Front Endocrinol (Lausanne). 2018;9:819. doi:10.3389/fendo.2018.00819
51. Chen YX, Du JT, Zhou LX, et al. Alternative O-GlcNAcylation/O-phosphorylation of Ser16 induce different conformational disturbances to the N terminus of murine estrogen receptor beta. Research Support, Non-U.S. Gov't. Chemistry & biology. Sep 2006;13(9):937-44. doi:10.1016/j.chembiol.2006.06.017
52. Gloster TM, Vocadlo DJ. Mechanism, Structure, and Inhibition of O-GlcNAc Processing Enzymes. Current signal transduction therapy. Jan 2010;5(1):74-91.
53. Copeland RJ, Han G, Hart GW. O-GlcNAcomics-Revealing roles of O-GlcNAcylation in disease mechanisms and development of potential diagnostics. Proteomics Clinical applications. May 3 2013;doi:10.1002/prca.201300001