A Pediatric Lung Assist System

Main Article Content

Katelin Omecinski, BS http://orcid.org/0000-0003-0689-567X William Federspiel, PhD http://orcid.org/0000-0002-7068-6779

Abstract

Respiratory disease remains a pervasive medical condition amongst the pediatric health population. Mechanical ventilation and extracorporeal membrane oxygenation (ECMO) are used to bridge patients to transplant or recovery when conventional therapy fails. Patients undergoing these treatments may be sedated for extended periods of time, resulting in deconditioning of the patient’s musculature. Patients who remain awake on ECMO, however, can participate in physical therapy and combat muscle wasting. Typical ECMO circuits are complex and present a major consumer of hospital resources for these patients undergoing rehabilitation and ambulation. Our research group has pursued the integration of mechanical circulatory and respiratory assistance into a compact platform device, the ModELAS, to address this clinical need. The aim of this review is to summarize published work on the pediatric application of the ModELAS. A breadth of topics will be reviewed, including the design requirements, device evolution, in-vitro results, and in-vivo results of the device.  

Article Details

How to Cite
OMECINSKI, Katelin; FEDERSPIEL, William. A Pediatric Lung Assist System. Medical Research Archives, [S.l.], v. 10, n. 3, mar. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2714>. Date accessed: 28 nov. 2022. doi: https://doi.org/10.18103/mra.v10i3.2714.
Section
Research Articles

References

1. Moore BJ, Freeman WJ, Jiang HJ. Costs of Pediatric Hospital Stays, 2016. Agency for Healthcare Research and Quality; 2019:12. https://www.hcup-us.ahrq.gov/reports/statbriefs/sb250-Pediatric-Stays-Costs-2016.pdf
2. Khemani RG, Markovitz BP, Curley MAQ. Characteristics of Children Intubated and Mechanically Ventilated in 16 PICUs. Chest. 2009;(136):765-771. doi:10.1378/chest.09-0207
3. International Summary - January 2017. Extracorporeal Life Support Organization; 2017:1-34. Accessed December 15, 2021. https://www.elso.org/portals/0/files/reports/2017/international%20summary%20january%202017.pdf
4. International Summary - October 2021. Extracorporeal Life Support Organization; 2021.
5. Thompson K, Staffa SJ, Nasr VG, et al. Mortality after Lung Transplantation for Children Bridged with Extracorporeal Membrane Oxygenation. Annals ATS. Published online October 7, 2021:AnnalsATS.202103-250OC. doi:10.1513/AnnalsATS.202103-250OC
6. Field-Ridley A, Dharmar M, Steinhorn D, McDonald C, Marcin JP. Intensive Care Unit-Acquired Weakness (ICU-AW) is Associated With Differences in Clinical Outcomes in Critically Ill Children. Pediatr Crit Care Med. 2016;17(1):53-57. doi:10.1097/PCC.0000000000000538
7. Rehder KJ, Turner DA, Hartwig MG, et al. Active Rehabilitation During Extracorporeal Membrane Oxygenation as a Bridge to Lung Transplantation. Respiratory Care. 2013;58(8):1291-1298. doi:10.4187/respcare.02155
8. Hayes D, Kukreja J, Tobias JD, Ballard HO, Hoopes CW. Ambulatory venovenous extracorporeal respiratory support as a bridge for cystic fibrosis patients to emergent lung transplantation. Journal of Cystic Fibrosis. 2012;11(1):40-45. doi:10.1016/j.jcf.2011.07.009
9. Turner DA, Cheifetz IM, Rehder KJ, et al. Active rehabilitation and physical therapy during extracorporeal membrane oxygenation while awaiting lung transplantation: A practical approach*: Critical Care Medicine. 2011;39(12):2593-2598. doi:10.1097/CCM.0b013e3182282bbe
10. Mohite P, Sabashnikov A, Reed A, et al. Extracorporeal Life Support in “Awake” Patients as a Bridge to Lung Transplant. Thorac cardiovasc Surg. 2015;63(08):699-705. doi:10.1055/s-0035-1546429
11. Fuehner T, Kuehn C, Hadem J, et al. Extracorporeal Membrane Oxygenation in Awake Patients as Bridge to Lung Transplantation. Am J Respir Crit Care Med. 2012;185(7):763-768. doi:10.1164/rccm.201109-1599OC
12. Turner DA, Rehder KJ, Bonadonna D, et al. Ambulatory ECMO as a Bridge to Lung Transplant in a Previously Well Pediatric Patient With ARDS. Pediatrics. 2014;134(2):e583-e585. doi:10.1542/peds.2013-3435
13. Schmidt F, Jack T, Sasse M, et al. Back to the roots? Dual cannulation strategy for ambulatory ECMO in adolescent lung transplant candidates: An alternative? Pediatric Transplantation. 2017;21(4):e12907. doi:10.1111/petr.12907
14. Scott S, Escobar M, Brown C, et al. THE USE OF VA ECMO AS A BRIDGE TO PEDI- ATRIC HEART-LUNG TRANSPLANT: A CASE REPORT. Critical Care Medicine. 2020;48(1):80. doi:10.1097/01.ccm.0000619136.93084.d6
15. Hayes D, Galantowicz M, Preston TJ, et al. Cross-country transfer between two children’s hospitals of a child using ambulatory extracorporeal membrane oxygenation for bridge to lung transplant. Pediatr Transplantation. 2013;17(5):E117-E118. doi:10.1111/petr.12098
16. Orizondo RA, May AG, Madhani SP, et al. In Vitro Characterization of the Pittsburgh Pediatric Ambulatory Lung. ASAIO Journal. Published online December 2017. doi:10.1097/MAT.0000000000000711
17. Madhani SP, Frankowski BJ, Federspiel WJ. Fiber Bundle Design for an Integrated Wearable Artificial Lung. ASAIO Journal. 2017;63(5):631-636. doi:10.1097/MAT.0000000000000542
18. Madhani SP, Frankowski BJ, Burgreen GW, et al. In vitro and in vivo evaluation of a novel integrated wearable artificial lung. The Journal of Heart and Lung Transplantation. 2017;36(7):806-811. doi:10.1016/j.healun.2017.02.025
19. Orizondo RA, Omecinski KS, May AG, et al. Month-long Respiratory Support by a Wearable Pumping Artificial Lung in an Ovine Model. Transplantation. 2021;105(5):999-1007. doi:10.1097/TP.0000000000003481
20. Madhani SP, Frankowski BJ, Ye SH, et al. In Vivo 5 Day Animal Studies of a Compact, Wearable Pumping Artificial Lung: ASAIO Journal. Published online December 2017:1. doi:10.1097/MAT.0000000000000740
21. May AG, Orizondo RA, Frankowski BJ, et al. In vivo testing of the low-flow CO2 removal application of a compact, platform respiratory device. ICMx. 2020;8(1):45. doi:10.1186/s40635-020-00329-9
22. May AG, Orizondo RA, Frankowski BJ, Wearden PD, Federspiel WJ. Acute In Vivo Evaluation of the Pittsburgh Pediatric Ambulatory Lung: ASAIO Journal. 2019;65(4):395-400. doi:10.1097/MAT.0000000000000918
23. Svitek RG, Frankowski BJ, Federspiel WJ. Evaluation of a Pumping Assist Lung That Uses a Rotating Fiber Bundle. ASAIO J. 2005;51(6):773-780. doi:10.1097/01.mat.0000178970.00971.43
24. Wu ZJ, Gellman B, Zhang T, Taskin ME, Dasse KA, Griffith BP. Computational Fluid Dynamics and Experimental Characterization of the Pediatric Pump-Lung. Cardiovasc Eng Tech. 2011;2(4):276-287. doi:10.1007/s13239-011-0071-5
25. Brogan T. Extracorporeal Life Support: The ELSO Red Book. 5th ed. (Brogan T, Lequier L, Lorusso R, MacLaren G, Peek GJ, eds.). ELSO and Seminars in Perinatology; 2017.