Severe Bronchiolitis as a Cause of ARDS in Early Childhood. Pathophysiology and Strategies to Minimize Lung Injury

Main Article Content

Corrado Moretti Camilla Gizzi Caterina Silvia Barbara Nicola Pozzi Fabio Midulla Paola Cogo

Abstract

Bronchiolitis is one of the most frequent acute diseases of the lower respiratory tract in infants worldwide, and Respiratory Syncytial Virus remains the most common and aggressive viral disease. The course of the disease is usually benign, but its severity may change by evolving into parenchymal disease. In the more severe cases, its clinical and radiological characteristics may be consistent with acute respiratory distress syndrome. Management of these cases includes admission to paediatric intensive care and invasive mechanical ventilation. This paper reviews the definition of paediatric and neonatal acute respiratory distress syndrome, which was primarily designed and validated for adults. The article investigates the pathophysiology of paediatric acute respiratory distress syndrome further, describing how damage to the alveolar-capillary units, surfactant inactivation and inflammation occurs. Mechanisms that contribute to acute lung injury, such as volutrauma, barotrauma, stress and strain, are illustrated in detail, and an overview of the strategies that may help minimize neonatal lung injury and optimize ventilatory support is provided. These strategies include lung-protective mechanical ventilation, surfactant treatment, inhaled nitric oxide, high frequency oscillatory ventilation, recruiting manoeuvres, prone position and neuromuscular blocking agents. The objective is to help clinicians understand the peculiar pathophysiology of severe bronchiolitis and so guide them in preventing or attenuating lung injury during treatment. As such, this paper aims to contribute to defining optimal treatment of severe cases of bronchiolitis.

Article Details

How to Cite
MORETTI, Corrado et al. Severe Bronchiolitis as a Cause of ARDS in Early Childhood. Pathophysiology and Strategies to Minimize Lung Injury. Medical Research Archives, [S.l.], v. 10, n. 5, june 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2793>. Date accessed: 27 dec. 2024. doi: https://doi.org/10.18103/mra.v10i5.2793.
Section
Review Articles

References

1) Papoff P, Moretti C, Cangiano G, et al. Incidence and predisposing factors for severe disease in previously healthy term infants experiencing their first episode of bronchiolitis. Acta Paediatr. 2011;100(7):e17-23.
2) Kong AM, Winer IH, Zimmerman NM, et al. Increasing Rates of RSV Hospitalization among Preterm Infants: A Decade of Data. Am J Perinatol. 2021.doi:10.1055/s-0041-1736581.
3) Marlow RK, Brouillette S, Williams V, et al. Risk Factors Associated with Mechanical Ventilation in Critical Bronchiolitis. Children (Basel). 2021;8(11):1035. doi:10.3390/children8111035.
4) Hammer J, Numa A, Newth CJ. Acute respiratory distress syndrome caused by respiratory syncytial virus. Pediatr Pulmonol. 1997;23(3):176-83.
5) Cruces P, González-Dambrauskas S, Quilodrán J, et al. Respiratory mechanics in infants with severe bronchiolitis on controlled mechanical ventilation. BMC Pulm Med. 2017;17(1):129. doi: 10.1186/s12890-017-0475-6.
6) Ghazaly MMH, Abu Faddan NH, Raafat DM, Mohammed NA, Nadel S. Acute viral bronchiolitis as a cause of pediatric acute respiratory distress syndrome. Eur J Pediatr. 2021;180(4):1229-1234.
7) Greenberg D, Dagan R, Shany E, Ben-Shimol S, Givon-Lavi N. Incidence of respiratory syncytial virus bronchiolitis in hospitalized infants born at 33-36 weeks of gestational age compared with those born at term: a retrospective cohort study. Clin Microbiol Infect. 2020;26(2):256.e1-256.e5.
8) Shimoda LA, Semenza GL. HIF and the lung: role of hypoxia-inducible factors in pulmonary development and disease.Am J Respir Crit Care Med. 2011;183(2):152-6.
9) Pabelick CM, Thompson MA, Britt RD Jr. Effects of Hyperoxia on the Developing Airway and Pulmonary Vasculature. Adv Exp Med Biol. 2017;967:179-194.
10) Helfrich AM, Nylund CM, Eberly MD, Eide BM, Stagliano DR. Healthy Late-preterm infants born 33-36+6 weeks gestational age have higher risk for respiratory syncytial virus hospitalization. Early Hum Dev. 2015;91(9):541-6.
11) Friedrich L, Pitrez PM, Stein RT, Goldani M, Tepper R, Jones MH. Growth rate of lung function in healthy preterm infants. Am J Respir Crit Care Med. 2007;176(12):1269–73.
12) Maritz GS, Morley CJ, Harding R. Early developmental origins of impaired lung structure and function. Early Hum Dev. 2005;81(9):763–71.
13) Vrijlandt EJ, Kerstjens JM, Duiverman EJ, Bos AF, Reijneveld SA. Moderately preterm children have more respiratory problems during their first 5 years of life than children born full term. Am J Respir Crit Care Med. 2013;187(11):1234-40.
14) ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012;307(23):2526-33.
15) Pediatric Acute Lung Injury Consensus Conference Group. Pediatric acute respiratory distress syndrome: consensus recommendations from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5):428-39.
16) De Luca D, van Kaam AH, Tingay DG, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. Lancet Respir Med. 2017;5(8):657-666.
17) Cornfield DN. Acute respiratory distress syndrome in children: physiology and management. Curr Opin Pediatr. 2013;25(3):338-43.
18) Allareddy V, Cheifetz IM. Clinical trials and future directions in pediatric acute respiratory distress syndrome. Ann Transl Med. 2019;7(19):514. doi: 10.21037/atm.2019.09.14.
19) Schouten LR, Veltkamp F, Bos AP, et al. Incidence and mortality of acute respiratory distress syndrome in children: a systematic review and meta-analysis. Crit Care Med. 2016;44:819-29.
20) Schouten LR, van Kaam AH, Kohse F, Veltkamp F, et al. Age-dependent differences in pulmonary host responses in ARDS: a prospective observational cohort study. Ann Intensive Care. 2019;9(1):55. doi: 10.1186/s13613-019-0529-4.
21) Khemani RG, Smith L, Lopez-Fernandez YM, et al. Paediatric acute respiratory distress syndrome incidence and epidemiology (PARDIE): an international, observational study. Lancet Respir Med. 2019;7(2):115-128.
22) Fanelli V, Ranieri VM. Mechanisms and clinical consequences of acute lung injury. Ann Am Thorac Soc. 2015;12(S1):S3-8.
23) Tomashefski JF Jr. Pulmonary pathology of acute respiratory distress syndrome. Clin Chest Med. 2000;21(3):435-66.
24) Günther A, Siebert C, Schmidt R, et al. Surfactant alterations in severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. Am J Respir Crit Care Med. 1996;153(1):176-84
25) Hartmann F, Fiori HH, Ramos Garcia PC, Piva J, Fiori RM. Surfactant deficiency in infants with severe acute viral bronchiolitis. J Pediatr 2014;164(6):1432-5.
26) Skelton R, Holland P, Darowski M, Chetcuti PA, Morgan LW, Harwood JL. Abnormal surfactant composition and activity in severe bronchiolitis. Acta Paediatr. 1999;88(9):942-6.
27) Cheifetz IM. Pediatric ARDS. Respir Care. 2017;62(6):718-731.
28) Levi M, van der Poll T, Büller HR. Bidirectional relation between inflammation and coagulation. Circulation. 2004;109(22):2698-704.
29) Levi M, Schultz MJ, Rijneveld AW, van der Poll T. Bronchoalveolar coagulation and fibrinolysis in endotoxemia and pneumonia. Crit Care Med. 2003;31(4S):S238-42.
30) Idell S. Coagulation, fibrinolysis, and fibrin deposition in acute lung injury. Crit Care Med. 2003;31(4S):S213-20.
31) Günther A, Mosavi P, Heinemann S, et al. Alveolar fibrin formation caused by enhanced procoagulant and depressed fibrinolytic capacities in severe pneumonia. Comparison with the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2000;161(2 Pt1):454-62.
32) Gattinoni L, Pesenti A. The concept of "baby lung". Intensive Care Med. 2005;31(6):776-84.
33) Gattinoni L, Carlesso E, Caironi P. Stress and strain within the lung. Curr Opin Crit Care. 2012;18(1):42-7.
34) Gattinoni L, Tonetti T, Cressoni M, et al.Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567-1575.
35) Carteaux G, Parfait M, Combet M, Haudebourg AF, Tuffet S, Mekontso Dessap A. Patient-Self Inflicted Lung Injury: A Practical Review. J Clin Med. 2021;10(12):2738. doi:10.3390/jcm10122738.
36) Gattinoni L, Giosa L, Bonifazi M, et al.Targeting transpulmonary pressure to prevent ventilator-induced lung injury. Expert Rev Respir Med. 2019;13(8):737-746.
37) Giustivi D, Bottazzini F, Belliato M.Respiratory. Monitoring at Bedside in COVID-19 Patients. J Clin Med. 2021;10(21):4943. doi: 10.3390/jcm10214943.
38) Gattinoni L, Protti A, Caironi P, Carlesso E. Ventilator-induced lung injury: the anatomical and physiological framework. Crit Care Med. 2010;38(10S):S539-48.
39) Gattinoni L, Tonetti T, Quintel M. Regional physiology of ARDS. Crit Care. 2017;21(S3):312. doi: 10.1186/s13054-017-1905-9.
40) Dahlem P, van Aalderen WMC, Bos AP. Pediatric acute lung injury. Paediatr Respir Rev. 2007;8(4): 348-62.
41) Chiumello D, Carlesso E, Brioni M, et al. Airway driving pressure and lung stress in ARDS patients. Crit Care 2016;20:276. doi: 10.1186/s13054-016-1446-7.
42) Amato MB, Meade MO, Slutsky AS, et al. Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 2015;372:747-55.
43) Kneyber MCJ, de Luca D, Calderini E, et al. Recommendations for mechanical ventilation of critically ill children from the Paediatric Mechanical Ventilation Consensus Conference (PEMVECC). Intensive Care Med. 2017;43(12):1764-1780.
44) Khemani RG, Parvathaneni K, Yehya N, Bhalla AK, Thomas NJ, Newth CJL. Positive End-Expiratory Pressure Lower Than the ARDS Network Protocol Is Associated with Higher Pediatric Acute Respiratory Distress Syndrome Mortality. Am J Respir Crit Care Med. 2018;198(1):77-89.
45) Pelletier JH, Au AK, Fuhrman D, Clark RSB, Horvat C. Trends in Bronchiolitis ICU Admissions and Ventilation Practices: 2010-2019. Pediatrics. 2021;147(6):e2020039115. doi: 10.1542/peds.2020-039115.
46) Shanahan KH, Monuteaux MC, Nagler J, Bachur RG. Noninvasive Ventilation and Outcomes in Bronchiolitis. Crit Care Med. 2021;49(12):e1234-e1240.
47) Willson DF, Chess PR, Notter RH. Surfactant for pediatric acute lung injury. Pediatr Clin North Am. 2008;55(3):545-75.
48) Duffett M, Choong K, Ng V, Randolph A, Cook DJ. Surfactant therapy for acute respiratory failure in children: a systematic review and meta-analysis. Crit Care 2007;11(3):R66. doi: 10.1186/cc5944.
49) Moretti C, Papoff P, Barbàra CS, Liberati C, Guidotti M, Midulla F. Surfactant therapy for acute respiratory distress in children. Acta Biomed. 2013;84 (S1):18-21.
50) Amigoni A, Pettenazzo A, Stritoni V, Circelli M. Surfactants in Acute Respiratory Distress Syndrome in Infants and Children: Past, Present and Future. Clin Drug Investig. 2017 Aug;37(8):729-736.
51) Hartmann F, Fiori HH, Ramos Garcia PC, Piva J, Fiori RM. Surfactant deficiency in infants with severe acute viral bronchiolitis. J Pediatr. 2014;164(6):1432-5.
52) Skelton R, Holland P, Darowski M, Chetcuti PA, Morgan LW, Harwood JL. Abnormal surfactant composition and activity in severe bronchiolitis. Acta Paediatr. 1999;88(9):942-6.
53) Jat KR, Chawla D. Surfactant therapy for bronchiolitis in critically ill infants. Cochrane Database Syst Rev. 2015(8):CD009194.
54) Cogo PE, Carnielli VP, Bunt JE, et al. Endogenous surfactant metabolism in critically ill infants measured with stable isotope labeled fatty acids. Pediatr Res. 1999;45(2):242-6.
55) Krause MF, von Bismarck P, Oppermann HC, Ankermann T. Bronchoscopic surfactant administration in pediatric patients with persistent lobar atelectasis. Respiration. 2008;75(1):100-4.
56) Walmrath D, Grimminger F, Pappert D, et al. Bronchoscopic administration of bovine natural surfactant in ARDS and septic shock: impact on gas exchange and haemodynamics. Eur Respir J. 2002;19(5):805-10.
57) Choi HJ, Hahn S, Lee J, et al. Surfactant lavage therapy for meconium aspiration syndrome: a systematic review and meta-analysis. Neonatology. 2012;101(3):183-9.
58) Rey-Santano C, Alvarez-Diaz FJ, Mielgo V, et al. Bronchoalveolar lavage versus bolus administration of lucinactant, a synthetic surfactant in meconium aspiration in newborn lambs. Pediatr Pulmonol. 2011;46(10):991-9.
59) Wolfler A, Piastra M, Amigoni A, et al. A shared protocol for porcine surfactant use in pediatric acute respiratory distress syndrome: a feasibility study. BMC Pediatr. 2019;19(1):203. doi: 10.1186/s12887-019-1579-3.
60) Sweet DG, Turner M, Straňák Z, et al. A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome: two-year outcomes. J Matern Fetal Neonatal Med. 2020;1-5. doi: 10.1080/14767058.2020.1863363.
61) Tamburro RF, Kneyber MC, Pediatric Acute Lung Injury Consensus Conference Group. Pulmonary specific ancillary treatment for pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5 S1):S61-72.
62) Afshari A, Brok J, Møller AM, Wetterslev J. Inhaled nitric oxide for acute respiratory distress syndrome and acute lung injury in adults and children: a systematic review with meta-analysis and trial sequential analysis. Anesth Analg. 2011;112(6):1411-21.
63) Hunt JL, Bronicki RA, Anas N. Role of Inhaled Nitric Oxide in the Management of Severe Acute Respiratory Distress Syndrome. Front Pediatr. 2016;4:74. doi: 10.3389/fped.2016.00074. eCollection 2016.
64) Ferguson ND, Cook DJ, Guyatt GH, et al. High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med. 2013;368(9):795-805.
65) Wong JJ, Liu S, Dang H, et al. The impact of high frequency oscillatory ventilation on mortality in paediatric acute respiratory distress syndrome. Crit Care. 2020;24(1):31. doi: 10.1186/s13054-020-2741-x.
66) Cruces P, Donoso A, Valenzuela J, Díaz F. Respiratory and hemodynamic effects of a stepwise lung recruitment maneuver in pediatric ARDS: a feasibility study. Pediatr Pulmonol. 2013;48(11):1135-43.
67) Jauncey-Cooke J, East CE, Bogossian F. Paediatric lung recruitment: a review of the clinical evidence. Paediatr Respir Rev. 2015;16(2):127-32.
68) Gattinoni L, Taccone P, Carlesso E, Marini JJ. Prone position in acute respiratory distress syndrome. Rationale, indications, and limits. Am J Respir Crit Care Med. 2013;188(11):1286-93.
69) Guérin C, Reignier J, Richard JC, et al. Prone positioning in severe acute respiratory distress syndrome. N Engl J Med. 2013; 368(23):2159-68.
70) Sud S, Friedrich JO, Adhikari NK, et al. Effect of prone positioning during mechanical ventilation on mortality among patients with acute respiratory distress syndrome: a systematic review and meta-analysis. CMAJ. 2014;186(10): E381-90.
71) Fineman LD, LaBrecque MA, Shih MC, Curley MA. Prone positioning can be safely performed in critically ill infants and children. Pediatr Crit Care Med. 2006;7(5):413-22.
72) Rowan CM, Klein MJ, Hsing DD, et al. Early Use of Adjunctive Therapies for Pediatric Acute Respiratory Distress Syndrome: A PARDIE Study. Am J Respir Crit Care Med. 2020;201(11):1389-1397.
73) Gillies D, Wells D, Bhandari AP. Positioning for acute respiratory distress in hospitalised infants and children. Cochrane Database Syst Rev. 2012(7):CD003645.
74) Baudin F, Emeriaud G, Essouri S, et al. Physiological Effect of Prone Position in Children with Severe Bronchiolitis: A Randomized Cross-Over Study (BRONCHIO-DV). J Pediatr. 2019;205:112-119.
75) Friedrich O, Reid MB, Van den Berghe G, et al. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiol Rev. 2015;95(3):1025-109.
76) Harrar DB, Darras BT, Ghosh PS. Acute Neuromuscular Disorders in the Pediatric Intensive Care Unit. J Child Neurol. 2020;35(1):17-24.