Practicalities for Exercise Prescription in Long-COVID-19 Rehabilitation. A Narrative Review

Main Article Content

Eleni A. Kortianou Aspasia S. Mavronasou Vaia Sapouna


Many COVID-19 survivors worldwide suffer from persistent symptoms, impaired functional capacity and quality of life. Rehabilitation exercise interventions for the long-term physical consequences of coronavirus disease 2019 (COVID-19) are currently being reported. As a result, the clinical practice and research focus on interventions that support recovery from ongoing symptomatology, independently to hospitalization. To date, the outpatient rehabilitation programs offer various exercise modes and training intensities for people recovering from long-term symptomatology of COVID-19.

This narrative review summarizes previous studies that used exercise training protocols at the outpatient rehabilitation setting, presents the effectiveness of training on the functional outcomes and provides practical issues of the application of exercise training which overcome possible respiratory and peripheral muscle limiting factors of exercise and functional capacity for patients with Long-COVID-19. To this end we make recommendations on how better to implement exercise training in future studies so as to maximize training effects.

Due to lack of randomized trials, more research is needed in the field of the exercise training modalities that are more effective and in parallel more tolerable for patients with persistent post-COVID-19 symptoms. In this context, interval training mode with short exercise periods can prevent high lactate accumulation and allow more intense exercise stimuli to the deconditioned peripheral muscles with minimal cardiac strain and exercise-induced hyperventilation, thus improving exercise capacity in this patients’ population.

Keywords: Covid-19, post-COVID-19, exercise training, rehabilitation, physiotherapy

Article Details

How to Cite
KORTIANOU, Eleni A.; MAVRONASOU, Aspasia S.; SAPOUNA, Vaia. Practicalities for Exercise Prescription in Long-COVID-19 Rehabilitation. A Narrative Review. Medical Research Archives, [S.l.], v. 10, n. 5, june 2022. ISSN 2375-1924. Available at: <>. Date accessed: 19 july 2024. doi:
Review Articles


1. Spruit MA, Holland AE, Singh SJ, Tonia T, Wilson KC, Troosters T. COVID-19: Interim guidance on rehabilitation in the hospital and post-hospital phase from a European Respiratory Society and American Thoracic Society-coordinated international task force. Eur Respir J. 2020;56(6):2002197. doi: 10.1183/13993003.02197-2020
2. Boutou AK, Asimakos A, Kortianou E, Vogiatzis I, Tzouvelekis A. Long COVID-19 Pulmonary Sequelae and Management Considerations. J Pers Med. 2021;11(9):838. doi: 10.3390/jpm11090838
3. Lugo-Agudelo LH, Cruz Sarmiento KM, Spir Brunal MA, et al. Adaptations for rehabilitation services during the COVID-19 pandemic proposed by scientific organizations and rehabilitation professionals. J Rehabil Med. 2021;53(9):jrm00228. doi: 10.2340/16501977-2865
4. World Health Organization (WHO). A clinical case definition of post COVID-19 condition by a Delphi consensus, 6 October 2021. 2021.
5. National Institute for Health and Care Excellence (NICE): Clinical Guidelines. In COVID-19 Rapid Guideline: Managing the Long-Term Effects of COVID-19; National Institute for Health and Care Excellence: London, UK, 2020. Available online (accessed on 3 March 2022).
6. Nalbandian A, Sehgal K, Gupta A, et al. Post-acute COVID-19 syndrome. Nat Med. 2021;27(4): 601–615. doi: 10.1038/s41591-021-01283-z
7. Bell ML, Catalfamo CJ, Farland LV, et al. Post-acute sequelae of COVID-19 in a non-hospitalized cohort: Results from the Arizona CoVHORT. PLoS One. 2021;16(8):e0254347. doi: 10.1371/journal.pone.0254347
8. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 Long term effects of COVID-19: A systematic review and meta-analysis. doi: 10.1101/2021.
9. Belli S, Balbi B, Prince I, et al. Low physical functioning and impaired performance of activities of daily life in COVID-19 patients who survived hospitalization. Eur Respir J. 2020;56(4):2002096. doi: 10.1183/13993003.02096-2020
10. Fernández-de-Las-Peñas C, Martin-Guerrero JD, Navarro-Pardo E, Rodriguez-Jimenez J, Pellicer-Valero OJ. Post-COVID functional limitations on daily living activities are associated with symptoms experience at the acute phase of SARS-CoV-2 infection and internal care unit admission: A multicenter study. J Infect. 2022;84(2):248-288. doi: 10.1016/j.jinf.2021.08.009
11. Paneroni M, Simonelli C, Saleri M, et al. Muscle strength and physical performance in patients without previous disabilities recovering from COVID-19 pneumonia. Am J Phys Med Rehabil. 2021;100(2):105-109. doi: 10.1097/PHM.0000000000001641
12. Betschart M, Rezek S, Unger I, et al. Feasibility of an Outpatient Training Program after COVID-19. Int J Environ Res Public Health. 2021;18(8):3978. doi: 10.3390/ijerph18083978
13. Dalbosco-Salas M, Torres-Castro R, Rojas Leyton A, et al. Effectiveness of a Primary Care Telerehabilitation Program for Post-COVID-19 Patients: A Feasibility Study. J Clin Med. 2021;10(19):4428. doi: 10.3390/jcm10194428
14. Daynes E, Gerlis C, Chaplin E, Gardiner N, Singh SJ. Early experiences of rehabilitation for individuals post-COVID to improve fatigue, breathlessness exercise capacity and cognition - A cohort study. Chron Respir Dis. 2021;18:14799731211015691. doi: 10.1177/14799731211015691
15. do Amaral VT, Viana AA, Heubel AD, et al. Cardiovascular, respiratory and functional effects of tele-supervised home-based exercise training in individuals recovering from COVID-19 hospitalization: A randomized clinical trial. doi: 10.1101/2022.01.24.22269745
16. Everaerts S, Heyns A, Langer D, et al. COVID-19 recovery: benefits of multidisciplinary respiratory rehabilitation. BMJ Open Respir Res. 2021;8(1):e000837. doi: 10.1136/bmjresp-2020-000837
17. Hermann M, Pekacka-Egli AM, Witassek F, Baumgaertner R, Schoendorf S, Spielmanns M. Feasibility and Efficacy of Cardiopulmonary Rehabilitation After COVID-19. Am J Phys Med Rehabil. 2020;99(10):865-869. doi: 10.1097/PHM.0000000000001549
18. Kortianou EA, Tsimouris D, Mavronasou A, et al. Pilot application of a home-based exercise program combined with tele-rehabilitation in previously hospitalized patients with COVID-19. A prospective observational study. Pneumon. 2022;35(2). doi: 10.18332/pne/146521.
19. Li J, Xia W, Zhan C, et al. A telerehabilitation programme in post-discharge COVID-19 patients (TERECO): a randomized controlled trial. Thorax. 2021;thorax jnl-2021-217382. doi: 10.1136/thoraxjnl-2021-217382
20. Martin I, Braem F, Baudet L, et al. Follow-up of functional exercise capacity in patients with COVID-19: It is improved by telerehabilitation. Respir Med. 2021;183:106438. doi: 10.1016/j.rmed.2021.106438
21. Mayer KP, Parry SM, Kalema AG, et al. Safety and Feasibility of an Interdisciplinary Treatment Approach to Optimize Recovery From Critical Coronavirus Disease 2019. Crit Care Explor. 2021;3(8):e0516. doi: 10.1097/CCE.0000000000000516
22. Nambi G, Abdelbasset WK, Alrawaili SM, et al. Comparative effectiveness study of low versus high-intensity aerobic training with resistance training in community-dwelling older men with post-COVID 19 sarcopenia: A randomized controlled trial. Clin Rehabil. 2022;36(1):59-68. doi: 10.1177/02692155211036956
23. Spielmanns M, Pekacka-Egli AM, Schoendorf S, Windisch W, Hermann M. Effects of a Comprehensive Pulmonary Rehabilitation in Severe Post-COVID-19 Patients. Int J Environ Res Public Health. 2021;18(5):2695. doi: 10.3390/ijerph18052695
24. Stavrou VT, Tourlakopoulos KN, Vavougios GD, et al. Eight Weeks Unsupervised Pulmonary Rehabilitation in Previously Hospitalized of SARS-CoV-2 Infection. J Pers Med. 2021;11(8):806. doi: 10.3390/jpm11080806
25. Thomas P, Baldwin C, Beach L, et al. Physiotherapy management for COVID-19 in the acute hospital setting and beyond: an update to clinical practice recommendations. J Physiother. 2022;68(1):8-25. doi: 10.1016/j.jphys.2021.12.012
26. Postigo-Martin P, Cantarero-Villanueva I, Lista-Paz A, Castro-Martín E, Arroyo-Morales M, Seco-Calvo J. A COVID-19 Rehabilitation Prospective Surveillance Model for Use by Physiotherapists. J Clin Med. 2021;10(8):1691. doi: 10.3390/jcm10081691
27. Negrini F, de Sire A, Andrenelli E, Lazzarini SG, Patrini M, Ceravolo MG. Rehabilitation and COVID-19: a rapid living systematic review 2020 by Cochrane Rehabilitation Field. Update as of October 31st, 2020. Eur J Phys Rehabil Med. 2021;57(1):166–170. doi: 10.23736/S1973-9087.20.06723-4
28. Randal JT, Beatty AL, Beckie TM, et al. Home-based cardiac rehabilitation: a scientific statement from the American Association of Cardiovascular and Pulmonary Rehabilitation, the American Heart Association and the American College of Cardiology. Circulation 2019; 140(1):e69-e89. doi: 10.1161/CIR.0000000000000663
29. Rochester CL, Vogiatzis I, Holland AE, et al. An official American Thoracic Society/European Respiratory Society Statement: Enhancing Implementation, Use and Delivery of Pulmonary Rehabilitation. Am J Respir Crit Care Med 2015;192(11):1373-1386. doi: 10.1164/rccm.201309-1634ST
30. Cortés-Telles A, López-Romero S, Figueroa-Hurtado E, et al. Pulmonary function and functional capacity in COVID-19 survivors with persistent dyspnoea. Respir Physiol Neurobiol. 2021;288:103644. doi: 10.1016/j.resp.2021.103644
31. Goërtz YM, Van Herck M, Delbressine JM, et al. Persistent symptoms 3 months after a SARS-CoV-2 infection: the post-COVID-19 syndrome? ERJ Open Res. 2020;6(4):00542–2020. doi: 10.1183/23120541.00542-2020
32. Raman B, Cassar MP, Tunnicliffe EM, et al. Medium-term effects of SARS-CoV-2 infection on multiple vital organs, exercise capacity, cognition, quality of life and mental health, post-hospital discharge. EClinicalMedicine. 2021;31:100683. doi: 10.1016/j.eclinm.2020.100683
33. Aparisi A, Ybarra-Falcón C, García-Gómez M, et al. Exercise Ventilatory Inefficiency in Post-COVID-19 Syndrome: Insights from a Prospective Evaluation. J Clin Med. 2021;10(12):2591. doi: 10.3390/jcm10122591
34. Rinaldo RF, Mondoni M, Parazzini EM, et al. Deconditioning as main mechanism of impaired exercise response in COVID-19 survivors. Eur Respir J. 2021;58(2):2100870. doi: 10.1183/13993003.00870-2021
35. Baratto C, Caravita S, Faini A, et al. Impact of COVID-19 on exercise pathophysiology: a combined cardiopulmonary and echocardiographic exercise study. J Appl Physiol (1985). 2021;130(5):1470-1478. doi: 10.1152/japplphysiol.00710.2020
36. Motiejunaite J, Balagny P, Arnoult F, et al. Hyperventilation: A Possible Explanation for Long-Lasting Exercise Intolerance in Mild COVID-19 Survivors. Front Physiol. 2021;11:614590. doi: 10.3389/fphys.2020.614590
37. Debeaumont D, Boujibar F, Ferrand-Devouge E, et al. Cardiopulmonary exercise testing to assess persistent symptoms at 6 Months in people with COVID-19 who survived hospitalization: A pilot study. Phys Ther. 2021;101(6):pzab099. doi: 10.1093/ptj/pzab099
38. Clavario P, De Marzo V, Lotti R, et al. Cardiopulmonary exercise testing in COVID-19 patients at 3 months follow-up. Int J Cardiol. 2021;340:113-118. doi: 10.1016/j.ijcard.2021.07.033
39. Skjørten I, Wathne Ankerstjerne OA, Trebinjac D, et al. Cardiopulmonary exercise capacity and limitations 3 months after COVID-19 hospitalisation. Eur Respir J. 2021;58(2):2100996. doi: 10.1183/13993003.00996-2021
40. Rodriguez-Blanco C, Gonzalez-Gerez JJ, Bernal-Utrera C, Anarte-Lazo E, Perez-Ale M, Saavedra-Hernandez M. Short-Term Effects of a Conditioning Telerehabilitation Program in Confined Patients Affected by COVID-19 in the Acute Phase. A Pilot Randomized Controlled Trial. Medicina (Kaunas). 2021;57(7):684. doi: 10.3390/medicina57070684
41. Guler SA, Ebner L, Aubry-Beigelman C, et al. Pulmonary function and radiological features 4 months after COVID-19: First results from the national prospective observational Swiss COVID-19 lung study. Eur Respir J. 2021;57(4):2003690. doi: 10.1183/13993003.03690-2020
42. Connes P, Machado R, Hue O, Reid H. Exercise limitation, exercise testing and exercise recommendations in sickle cell anemia. Clin Hemorheol Microcirc. 2011;49(1-4):151-163. doi: 10.3233/CH-2011-1465
43. Daher A, Balfanz P, Cornelissen C, et al. Follow up of patients with severe coronavirus disease 2019 (COVID-19): pulmonary and extrapulmonary disease sequelae. Respir Med. 2020;174:106197. doi: 10.1016/j.rmed.2020.106197
44. Holland AE, Spruit MA, Troosters T, et al. An official European Respiratory Society/American Thoracic Society technical standard: Field walking tests in chronic respiratory disease. Eur Respir J. 2014;44(6):1428–1446. doi: 10.1183/09031936.00150314
45. Simonelli C, Paneroni M, Vitacca M, et al. Measures of physical performance in COVID-19 patients: a mapping review. Pulmonology. 2021;27(6):518-528. doi: 10.1016/j.pulmoe.2021.06.005
46. Pellegrino R, Viegi G, Brusasco V, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005, 26, 948–968. doi: 10.1183/09031936.05.00035205
47. Finucane C, van Wijnen VK, Fan CW, et al. A practical guide to activate stand testing and analysis using continuous beat-to-beat non-invasive blood pressure monitoring. Clin Auton Res. 2019; 29:427-441. doi: 10.1007/s10286-019-00606-y
48. Verbeek JH, Rajamaki B, Ijaz S, et al. Personal protective equipment for preventing highly infectious diseases due to exposure to contaminated body fluids in healthcare staff. Cochrane Database Syst Rev. 2020;4(4):CD011621. doi: 10.1002/14651858.CD011621.pub4
49. Fletcher GF, Ades PA, Kligfield P, et al. Exercise standards for testing and training: A scientific statement from the American Heart Association. Circulation. 2013;128(8): 873–934. doi: 10.1161/CIR.0b013e31829b5b44
50. Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine. Position Stand: quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. doi: 10.1249/MSS.0b013e318213fefb
51. Williams MA, Haskell WL, Ades PA, et al. Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2007;116(5):572–584. doi: 10.1161/CIRCULATIONAHA.107.185214
52. Filgueira TO, Castoldi A, Santos LE, et al. The relevance of a physical active lifestyle and physical fitness on immune defense: mitigating disease burden, with focus on COVID-19 consequences. Front Immunol. 2021;12:587146. doi:
53. Ahmadi Hekmatikar AH, Ferreira Junior JB, Shahrbanian S, Suzuki K. Functional and Psychological changes after exercise training in post-COVID-19 patients discharged from the hospital: A PRISMA-Compliant Systematic Review. Int J Environ Res Public Health. 2022;19(4):2290. doi: 10.3390/ijerph19042290
54. Rees K, Taylor RS, Singh S, Coats AJS, Ebrahim S. Exercise based rehabilitation for heart failure. Cochrane Database Syst Rev. 2004;(3):CD003331. doi: 10.1002/14651858.CD003331.pub2
55. Casaburi R, Porszasz J, Burns MR, Carithers ER, Chang RS, Cooper CB. Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;155(5):1541-1551. doi: 10.1164/ajrccm.155.5.9154855
56. Ahmaidi S, Masse-Biron J, Adam B, et al. Effects of interval training at the ventilatory threshold on clinical and cardiorespiratory responses in elderly humans. Eur J Appl Physiol and Occup Physiol. 1998;78(2):170-176. doi: 10.1007/s004210050403
57. Vogiatzis I, Nanas S, Kastanakis E, Georgiadou O, Papazahou O, Roussos C. Dynamic hyperinflation and tolerance to interval exercise in patients with advanced COPD. Eur Respir J. 2004;24(3):385-390. doi: 10.1183/09031936.04.00128903
58. Meyer K, Samek L, Schwaibold M, et al. Physical responses to different modes of interval exercise in patients with chronic heart failure-application to exercise training. Eur Heart J. 1996;17(7):1040-1047. doi: 10.1093/oxfordjournals.eurheartj.a015000
59. Kortianou EA, Nasis IG, Spetsioti ST, Daskalakis AM, Vogiatzis I. Effectiveness of interval exercise training in patients with COPD. Cardiopulm Phys Ther J. 2010;21(3):12-19. PMCID: PMC2941353
60. Spahija J, de Marchie M, Grassino A. Effects of imposed pursed-lips breathing on respiratory mechanics and dyspnoea at rest and during exercise in COPD. Chest. 2005;128(2):640-650. doi: 10.1378/chest.128.2.640
61. Sakhaei S, Sadagheyani HE, Zinalpoor S, Markani AK, Motaarefi H. The impact of pursed-lips breathing maneuver on cardiac, respiratory and oxygenation parameters in COPD. Open Access Maced J Med Sci. 2018; 6(10):1851-1856. doi: 10.3889/oamjms.2018.407
62. Fregonezi GA, Resqueti VR, Güell Rous G. Pursed lips breathing. Arch Bronconeumol. 2004;40(6):279-282. doi: 10.1016/s1579-2129(06)70099-4
63. Krupp LB, LaRocca NG, Muir-Nash, Steinberg AD. The fatigue severity scale. Arch Neurol. 1989;46(10):1121-1123. doi:10.1001/archneur.1989.00520460115022