The Metabolic Model of Heart Failure; the Role of Sodium-Glucose Co-transporter 2(SGLT2) Inhibition

Main Article Content

Mohammed Shaban Franklin Sosa Miguel Rodriguez-Guerra Timothy J Vittorio


The sodium-glucose co-transporter-2-inhibitors (SGLT2I) recently gained a unique role in managing the heart failure reduced ejection fraction. These inhibitors reduce cardiovascular (CV) risk factors, including plasma glucose, blood pressure, albuminuria, body weight, and renal events in the long term. The clinical trials proved their role in reducing hospitalization for HF, CV and all-cause mortality, atherosclerosis-related events, and CKD progression. Initiating this medication on decompensated heart failure or post-discharge reduces the risk of re-hospitalization. These co-transporter inhibitors reduced heart failure and kidney events regardless of baseline biomarker concentration or diabetes mellitus status. This article aims to the metabolic paradigm and cellular metabolism by exposing the available clinical trials of this novel therapy for heart failure, uncovering the possible mechanisms of action on the CV system, and describing the positive effect on prognostic markers as pro-BNP, as well as changing the plasma renin-aldosterone activity, cardiac troponin T (hs-cTnT), and insulin-like growth factor-binding protein 7 (IGFBP7).

Article Details

How to Cite
SHABAN, Mohammed et al. The Metabolic Model of Heart Failure; the Role of Sodium-Glucose Co-transporter 2(SGLT2) Inhibition. Medical Research Archives, [S.l.], v. 10, n. 6, june 2022. ISSN 2375-1924. Available at: <>. Date accessed: 20 apr. 2024. doi:
Research Articles


1. Ohkuma T, Van Gaal L, Shaw W, et al. Clinical outcomes with canagliflozin according to baseline body mass index: results from post hoc analyses of the CANVAS Program. Diabetes Obes Metab. 2020;22(4):530-539. doi:10.1111/DOM.13920
2. Wagdy K, Nagy S. EMPEROR-Preserved: SGLT2 inhibitors breakthrough in the management of heart failure with preserved ejection fraction. Glob Cardiol Sci Pract. 2021;2021(3). doi:10.21542/GCSP.2021.17
3. Salah HM, Al'Aref SJ, Khan MS, et al. Efficacy and safety of sodium-glucose cotransporter 2 inhibitors initiation in patients with acute heart failure, with and without type 2 diabetes: a systematic review and meta-analysis. Cardiovasc Diabetol 2022 211. 2022;21(1):1-8. doi:10.1186/S12933-022-01455-2
4. Herat LY, Matthews J, Azzam O, Schlaich MP, Matthews VB. Targeting Features of the Metabolic Syndrome Through Sympatholytic Effects of SGLT2 Inhibition. Curr Hypertens Rep. Published online March 2, 2022. doi:10.1007/S11906-022-01170-Z
5. Herrington WG, Savarese G, Haynes R, et al. Cardiac, renal, and metabolic effects of sodium-glucose cotransporter 2 inhibitors: a position paper from the European Society of Cardiology ad-hoc task force on sodium-glucose cotransporter 2 inhibitors. Eur J Heart Fail. 2021;23(8):1260-1275. doi:10.1002/EJHF.2286
6. Fu JL, Yu Q, Li M Di, Hu CM, Shi G. Deleterious cardiovascular effect of exosome in digitalis-treated decompensated congestive heart failure. J Biochem Mol Toxicol. 2020;34(5). doi:10.1002/JBT.22462
7. Savino JA, Kosmas CE, Wagman G, Vittorio TJ. Evolution of the Chronic Congestive Heart Failure Paradigm. Cardiol Rev. 2013;21(3):121-126. doi:10.1097/CRD.0b013e318277c990
8. Ghionzoli N, Gentile F, Del Franco AM, et al. Current and emerging drug targets in heart failure treatment. Heart Fail Rev. Published online 2021. doi:10.1007/S10741-021-10137-2
9. Burnett JC. Vericiguat — Another Victory for Targeting Cyclic GMP in Heart Failure. N Engl J Med. 2020;382(20):1952-1953. doi:10.1056/NEJME2006855/SUPPL_FILE/NEJME2006855_DISCLOSURES.PDF
10. Breitenstein S, Roessig L, Sandner P, Lewis KS. Novel sGC Stimulators and sGC Activators for the Treatment of Heart Failure. Handb Exp Pharmacol. 2017;243:225-247. doi:10.1007/164_2016_100
11. Reginauld SH, Cannone V, Iyer S, et al. Differential Regulation of ANP and BNP in Acute Decompensated Heart Failure: Deficiency of ANP. JACC Heart Fail. 2019;7(10):891-898. doi:10.1016/J.JCHF.2019.05.012
12. Markham A, Duggan S. Vericiguat: First Approval. Drugs. 2021;81(6):721-726. doi:10.1007/S40265-021-01496-Z
13. PW A, B P, KJ A, et al. Vericiguat in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2020;382(20). doi:10.1056/NEJMOA1915928
14. Packer M, Anker SD, Butler J, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413-1424. doi:10.1056/NEJMOA2022190
15. Fang JC. Heart-Failure Therapy — New Drugs but Old Habits? N Engl J Med. 2019;381(21):2063-2064. doi:10.1056/NEJME1912180/SUPPL_FILE/NEJME1912180_DISCLOSURES.PDF
16. Packer M, Anker SD, Butler J, et al. Influence of neprilysin inhibition on the efficacy and safety of empagliflozin in patients with chronic heart failure and a reduced ejection fraction: the EMPEROR-Reduced trial. Eur Heart J. 2021;42(6). doi:10.1093/EURHEARTJ/EHAA968
17. McMurray JJV, Solomon SD, Inzucchi SE, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995-2008. doi:10.1056/NEJMOA1911303
18. McMurray JJV, DeMets DL, Inzucchi SE, et al. The Dapagliflozin And Prevention of Adverse-outcomes in Heart Failure (DAPA-HF) trial: baseline characteristics. Eur J Heart Fail. 2019;21(11):1402-1411. doi:10.1002/EJHF.1548
19. Martinez FA, Serenelli M, Nicolau JC, et al. Efficacy and Safety of Dapagliflozin in Heart Failure With Reduced Ejection Fraction According to Age: Insights From DAPA-HF. Circulation. 2020;141(2):100-111. doi:10.1161/CIRCULATIONAHA.119.044133
20. Jhund PS, Solomon SD, Docherty KF, et al. Efficacy of Dapagliflozin on Renal Function and Outcomes in Patients With Heart Failure With Reduced Ejection Fraction: Results of DAPA-HF. Circulation. 2021;143(4):298-309. doi:10.1161/CIRCULATIONAHA.120.050391
21. Shen L, Kristensen SL, Bengtsson O, et al. Dapagliflozin in HFrEF Patients Treated With Mineralocorticoid Receptor Antagonists: An Analysis of DAPA-HF. JACC Heart Fail. 2021;9(4):254-264. doi:10.1016/J.JCHF.2020.11.009
22. McMurray JJV, Packer M, Desai AS, et al. Baseline characteristics and treatment of patients in prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial (PARADIGM-HF). Eur J Heart Fail. 2014;16(7):817-825. doi:10.1002/EJHF.115
23. Wiviott SD, Raz I, Bonaca MP, et al. The design and rationale for the Dapagliflozin Effect on Cardiovascular Events (DECLARE)-TIMI 58 Trial. Am Heart J. 2018;200:83-89. doi:10.1016/J.AHJ.2018.01.012
24. Cahn A, Raz I, Leiter LA, et al. Cardiovascular, Renal, and Metabolic Outcomes of Dapagliflozin Versus Placebo in a Primary Cardiovascular Prevention Cohort: Analyses From DECLARE-TIMI 58. Diabetes Care. 2021;44(5):1159-1167. doi:10.2337/DC20-2492
25. Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. N Engl J Med. 2021;384(2):117-128. doi:10.1056/NEJMOA2030183
26. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy. N Engl J Med. 2019;380(24):2295-2306. doi:10.1056/NEJMOA1811744
27. Heerspink HJL, Stefansson B V., Chertow GM, et al. Rationale and protocol of the Dapagliflozin And Prevention of Adverse outcomes in Chronic Kidney Disease (DAPA-CKD) randomized controlled trial. Nephrol Dial Transplant. 2020;35(2):274-282. doi:10.1093/NDT/GFZ290
28. Chertow GM, Vart P, Jongs N, et al. Effects of Dapagliflozin in Stage 4 Chronic Kidney Disease. J Am Soc Nephrol. 2021;32(9):2352-2361. doi:10.1681/ASN.2021020167
29. McMurray JJV, Wheeler DC, Stefánsson B V., et al. Effects of Dapagliflozin in Patients With Kidney Disease, With and Without Heart Failure. JACC Heart Fail. 2021;9(11):807-820. doi:10.1016/J.JCHF.2021.06.017
30. Rådholm K, Figtree G, Perkovic V, et al. Canagliflozin and Heart Failure in Type 2 Diabetes Mellitus: Results From the CANVAS Program. Circulation. 2018;138(5):458-468. doi:10.1161/CIRCULATIONAHA.118.034222
31. Neuen BL, Ohkuma T, Neal B, et al. Relative and Absolute Risk Reductions in Cardiovascular and Kidney Outcomes With Canagliflozin Across KDIGO Risk Categories: Findings From the CANVAS Program. Am J Kidney Dis. 2021;77(1):23-34.e1. doi:10.1053/J.AJKD.2020.06.018
32. Levin A, Perkovic V, Wheeler DC, et al. Empagliflozin and Cardiovascular and Kidney Outcomes across KDIGO Risk Categories: Post Hoc Analysis of a Randomized, Double-Blind, Placebo-Controlled, Multinational Trial. Clin J Am Soc Nephrol. 2020;15(10):1433-1444. doi:10.2215/CJN.14901219
33. Cannon CP, McGuire DK, Pratley R, et al. Design and baseline characteristics of the eValuation of ERTugliflozin effIcacy and Safety CardioVascular outcomes trial (VERTIS-CV). Am Heart J. 2018;206:11-23. doi:10.1016/J.AHJ.2018.08.016
34. Åkerblom A, Oldgren J, Latva-Rasku A, et al. Effects of DAPAgliflozin on CARDiac substrate uptake, myocardial efficiency, and myocardial contractile work in type 2 diabetes patients-a description of the DAPACARD study. Ups J Med Sci. 2019;124(1):59-64. doi:10.1080/03009734.2018.1515281
35. Solini A, Seghieri M, Giannini L, et al. The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature. J Clin Endocrinol Metab. 2019;104(10):4253-4263. doi:10.1210/JC.2019-00706
36. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20(3):479-487. doi:10.1111/DOM.13126
37. Packer M, Anker SD, Butler J, et al. Empagliflozin in Patients With Heart Failure, Reduced Ejection Fraction, and Volume Overload: EMPEROR-Reduced Trial. J Am Coll Cardiol. 2021;77(11):1381-1392. doi:10.1016/J.JACC.2021.01.033
38. Scheen AJ. Effect of SGLT2 Inhibitors on the Sympathetic Nervous System and Blood Pressure. Curr Cardiol Rep. 2019;21(8). doi:10.1007/S11886-019-1165-1
39. Borghi C, Cosentino ER, Rinaldi ER, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. 2020;382(10):972-973. doi:10.1056/NEJMC1917241
40. Zhao Y, Xu L, Tian D, et al. Effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors on serum uric acid level: A meta-analysis of randomized controlled trials. Diabetes Obes Metab. 2018;20(2):458-462. doi:10.1111/DOM.13101
41. Januzzi JL, Xu J, Li JW, et al. Effects of Canagliflozin on Amino-Terminal Pro-B-Type Natriuretic Peptide: Implications for Cardiovascular Risk Reduction. J Am Coll Cardiol. 2020;76(18):2076-2085. doi:10.1016/J.JACC.2020.09.004
42. Nassif ME, Windsor SL, Borlaug BA, et al. The SGLT2 inhibitor dapagliflozin in heart failure with preserved ejection fraction: a multicenter randomized trial. Nat Med. 2021;27(11):1954-1960. doi:10.1038/S41591-021-01536-X
43. Tanaka A, Hisauchi I, Taguchi I, et al. Effects of canagliflozin in patients with type 2 diabetes and chronic heart failure: a randomized trial (CANDLE). ESC Hear Fail. 2020;7(4):1585-1594. doi:10.1002/EHF2.12707
44. Kusunose K, Imai T, Tanaka A, et al. Effects of canagliflozin on NT-proBNP stratified by left ventricular diastolic function in patients with type 2 diabetes and chronic heart failure: a sub analysis of the CANDLE trial. Cardiovasc Diabetol. 2021;20(1). doi:10.1186/S12933-021-01380-W
45. Ejiri K, Miyoshi T, Nakamura K, et al. The effect of luseogliflozin and alpha-glucosidase inhibitor on heart failure with preserved ejection fraction in diabetic patients: rationale and design of the MUSCAT-HF randomised controlled trial. BMJ Open. 2019;9(3). doi:10.1136/BMJOPEN-2018-026590
46. Tanaka A, Toyoda S, Imai T, et al. Effect of canagliflozin on N-terminal pro-brain natriuretic peptide in patients with type 2 diabetes and chronic heart failure according to baseline use of glucose-lowering agents. Cardiovasc Diabetol. 2021;20(1). doi:10.1186/S12933-021-01369-5
47. Jensen J, Omar M, Kistorp C, et al. Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal): a prespecified substudy of a double-blind, randomised, placebo-controlled trial. lancet Diabetes Endocrinol. 2021;9(2):106-116. doi:10.1016/S2213-8587(20)30382-X
48. Thiele K, Rau M, Hartmann NUK, et al. Effects of empagliflozin on erythropoiesis in patients with type 2 diabetes: Data from a randomized, placebo-controlled study. Diabetes Obes Metab. 2021;23(12):2814-2818. doi:10.1111/DOM.14517
49. Rau M, Thiele K, Hartmann NUK, et al. Empagliflozin does not change cardiac index nor systemic vascular resistance but rapidly improves left ventricular filling pressure in patients with type 2 diabetes: a randomized controlled study. Cardiovasc Diabetol. 2021;20(1). doi:10.1186/S12933-020-01175-5
50. Mordi NA, Mordi IR, Singh JS, Mccrimmon RJ, Struthers AD, Lang CC. Renal and Cardiovascular Effects of SGLT2 Inhibition in Combination With Loop Diuretics in Patients With Type 2 Diabetes and Chronic Heart Failure: The RECEDE-CHF Trial. Circulation. 2020;142(18):1713-1724. doi:10.1161/CIRCULATIONAHA.120.048739
51. Zanchi A, Burnier M, Muller ME, et al. Acute and Chronic Effects of SGLT2 Inhibitor Empagliflozin on Renal Oxygenation and Blood Pressure Control in Nondiabetic Normotensive Subjects: A Randomized, Placebo-Controlled Trial. J Am Heart Assoc. 2020;9(13). doi:10.1161/JAHA.119.016173
52. Vaduganathan M, Sattar N, Xu J, et al. Stress Cardiac Biomarkers, Cardiovascular and Renal Outcomes, and Response to Canagliflozin. J Am Coll Cardiol. 2022;79(5):432-444. doi:10.1016/J.JACC.2021.11.027
53. Omar M, Jensen J, Kistorp C, et al. The effect of empagliflozin on growth differentiation factor 15 in patients with heart failure: a randomized controlled trial (Empire HF Biomarker). Cardiovasc Diabetol. 2022;21(1):34. doi:10.1186/S12933-022-01463-2
54. Santos-Gallego CG, Vargas-Delgado AP, Requena-Ibanez JA, et al. Randomized Trial of Empagliflozin in Nondiabetic Patients With Heart Failure and Reduced Ejection Fraction. J Am Coll Cardiol. 2021;77(3):243-255. doi:10.1016/J.JACC.2020.11.008
55. B Z, C W, JM L, et al. Empagliflozin, Cardiovascular Outcomes, and Mortality in Type 2 Diabetes. N Engl J Med. 2015;373(22):17-18. doi:10.1056/NEJMOA1504720
56. Yu H, Basu S, Tang W, et al. Predicted Cardiac Functional Responses to Renal Actions of SGLT2i in the DAPACARD Trial Population: A Mathematical Modeling Analysis. J Clin Pharmacol. 2022;62(4). doi:10.1002/JCPH.1987
57. Oldgren J, Laurila S, Åkerblom A, et al. Effects of 6 weeks of treatment with dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on myocardial function and metabolism in patients with type 2 diabetes: A randomized, placebo-controlled, exploratory study. Diabetes Obes Metab. 2021;23(7):1505-1517. doi:10.1111/DOM.14363
58. Jürgens M, Schou M, Hasbak P, et al. Effects of Empagliflozin on Myocardial Flow Reserve in Patients With Type 2 Diabetes Mellitus: The SIMPLE Trial. J Am Heart Assoc. 2021;10(15). doi:10.1161/JAHA.120.020418
59. Hundertmark MJ, Agbaje OF, Coleman R, et al. Design and rationale of the EMPA-VISION trial: investigating the metabolic effects of empagliflozin in patients with heart failure. ESC Hear Fail. 2021;8(4):2580-2590. doi:10.1002/EHF2.13406
60. Mason T, Coelho-Filho OR, Verma S, et al. Empagliflozin Reduces Myocardial Extracellular Volume in Patients With Type 2 Diabetes and Coronary Artery Disease. JACC Cardiovasc Imaging. 2021;14(6):1164-1173. doi:10.1016/J.JCMG.2020.10.017
61. Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, et al. Mechanistic Insights of Empagliflozin in Nondiabetic Patients With HFrEF: From the EMPA-TROPISM Study. JACC Heart Fail. 2021;9(8):578-589. doi:10.1016/J.JCHF.2021.04.014
62. Tripolt NJ, Kolesnik E, Pferschy PN, et al. Impact of EMpagliflozin on cardiac function and biomarkers of heart failure in patients with acute MYocardial infarction-The EMMY trial. Am Heart J. 2020;221:39-47. doi:10.1016/J.AHJ.2019.12.004
63. Tanaka A, Shimabukuro M, Okada Y, et al. Rationale and design of a multicenter placebo-controlled double-blind randomized trial to evaluate the effect of empagliflozin on endothelial function: the EMBLEM trial. Cardiovasc Diabetol. 2017;16(1). doi:10.1186/S12933-017-0532-8
64. Pietschner R, Kolwelter J, Bosch A, et al. Effect of empagliflozin on ketone bodies in patients with stable chronic heart failure. Cardiovasc Diabetol. 2021;20(1). doi:10.1186/S12933-021-01410-7
65. Papadopoulou E, Loutradis C, Tzatzagou G, et al. dapagliflozin decreases ambulatory central blood pressure and pulse wave velocity in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Hypertens. 2021;39(4):749-758. doi:10.1097/HJH.0000000000002690
66. Tanaka A, Shimabukuro M, Teragawa H, et al. Reduction of estimated fluid volumes following initiation of empagliflozin in patients with type 2 diabetes and cardiovascular disease: a secondary analysis of the placebo-controlled, randomized EMBLEM trial. Cardiovasc Diabetol. 2021;20(1). doi:10.1186/S12933-021-01295-6
67. Nassif ME, Qintar M, Windsor SL, et al. Empagliflozin Effects on Pulmonary Artery Pressure in Patients With Heart Failure: Results From the EMBRACE-HF Trial. Circulation. 2021;143(17):1673-1686. doi:10.1161/CIRCULATIONAHA.120.052503
68. Omar M, Jensen J, Frederiksen PH, et al. Effect of Empagliflozin on Hemodynamics in Patients With Heart Failure and Reduced Ejection Fraction. J Am Coll Cardiol. 2020;76(23):2740-2751. doi:10.1016/J.JACC.2020.10.005
69. Nassif ME, Windsor SL, Tang F, et al. Dapagliflozin effects on lung fluid volumes in patients with heart failure and reduced ejection fraction: Results from the DEFINE-HF trial. Diabetes Obes Metab. 2021;23(6):1426-1430. doi:10.1111/DOM.14352
70. Carbone S, Billingsley HE, Canada JM, et al. The effects of canagliflozin compared to sitagliptin on cardiorespiratory fitness in type 2 diabetes mellitus and heart failure with reduced ejection fraction: The CANA-HF study. Diabetes Metab Res Rev. 2020;36(8). doi:10.1002/DMRR.3335
71. Damman K, Beusekamp JC, Boorsma EM, et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail. 2020;22(4):713-722. doi:10.1002/EJHF.1713
72. Boorsma EM, Beusekamp JC, ter Maaten JM, et al. Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure. Eur J Heart Fail. 2021;23(1):68-78. doi:10.1002/EJHF.2066
73. Voors AA, Angermann CE, Teerlink JR, et al. The SGLT2 inhibitor empagliflozin in patients hospitalized for acute heart failure: a multinational randomized trial. Nat Med. Published online February 28, 2022. doi:10.1038/S41591-021-01659-1
74. Tromp J, Ponikowski P, Salsali A, et al. Sodium-glucose cotransporter 2 inhibition in patients hospitalized for acute decompensated heart failure: rationale for and design of the EMPULSE trial. Eur J Heart Fail. 2021;23(5):826-834. doi:10.1002/EJHF.2137