An Overview of Nanoparticles for Treatment of Retinoblastoma: Disease Characteristics and Experimental Approaches

Main Article Content

Minesh Patel Eric Conte Nan Luo Virali Patel Ashley Varela Martinez Hae Chan Kim Naga Goli Robert B. Campbell


Retinoblastoma is the most common type of eye cancer in infants and children. Probability of saving vision and survival depends upon two main factors: progression of the disease from unilateral to bilateral and severity of the disease. In order to effectively treat retinoblastoma and retain vision, it is crucial to focus treatment options on reducing toxicity and nonspecific targeting while enhancing drug delivery, cellular uptake, and accumulation of chemotherapeutic agents to their specific target sites. Rapid elimination from blood circulation is the greatest obstacle that conventional chemotherapeutic agents face on journey to their target sites. Target specific nanoparticles have proven to be a useful tool in efforts to overcome challenges typically encountered by targeting strategies. Development of nanoparticles loaded with chemotherapeutic agents can allow for more selective tumor targeting, extended drug circulation times, and reduced drug-associated toxicity. Nanoparticles can significantly improve the treatment efficacy in retinoblastoma. The purpose of this review is to discuss the important characteristics and differences of nano delivery systems used against cellular and in vivo models of retinoblastoma, particularly as they relate to the popular Y79 retinoblastoma cell line.

Keywords: retinoblastoma, nanoparticles, drug delivery, nanotechnology, cancer therapy, liposomes, pediatric tumor

Article Details

How to Cite
PATEL, Minesh et al. An Overview of Nanoparticles for Treatment of Retinoblastoma: Disease Characteristics and Experimental Approaches. Medical Research Archives, [S.l.], v. 10, n. 6, june 2022. ISSN 2375-1924. Available at: <>. Date accessed: 20 apr. 2024. doi:
Research Articles


1. Grossniklaus HE. Retinoblastoma. Fifty years of progress. The LXXI Edward Jackson Memorial Lecture. Am J Ophthalmol. 2014;158:875–891.
2. Dimaras H, Corson TW, Cobrinik D, et al. Retinoblastoma. Nat Rev Dis Primers. 2015;1:15021.
3. American Cancer Society Website. Retinoblastoma. Accessed September 30, 2020.
4. Medline Plus Website. Retinoblastoma. Accessed September 30, 2020.
5. Balmer A, Zografos L, Munier F. Diagnosis and current management of retinoblastoma. Oncogene. 2006;25(38):5341-5349.
6. American Society of Clinical Oncology Website. Accessed September 30, 2020.
7. National Cancer Institute Website. Accessed September 30, 2020.
8. Broaddus E, Topham A, Singh AD. Survival with retinoblastoma in the USA: 1975-2004. Br J Ophthalmol. 2009;93(1):24-27.
9. American Cancer Society Website. Cancer Facts & Figures 2020. Accessed October 28, 2020.
10. Demirci H, Eagle RC, Shields CL, et al. Histopathologic Findings in Eyes with Retinoblastoma Treated Only With Chemoreduction. Arch Ophthalmol. 2003;121(8):1125–1131.
11. Schouten-van Meeteren A, van der Valk P, van der Linden H, et al. Histopathologic Features of Retinoblastoma and Its Relation with In Vitro Drug Resistance Measured by Means of the MTT Assay. Cancer. 2001;92(11):2933-2940.
12. Kohno S, Kitajima S, Sasaki N, et al. Retinoblastoma tumor suppressor functions shared by stem cell and cancer cell strategies. World J Stem Cells. 2016;8(4):170-184.
13. Laver NV, Sitko K, Duker J, et al. Ocular Tumors. In: Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms. Elsevier; 2014:2179-2200.
14. Pritchard EM, Dyer MA, Guy RK. Progress in Small Molecule Therapeutics for the Treatment of Retinoblastoma. Mini Rev Med Chem. 2016;16(6):430-454.
15. Fazili N, Balagholi S, Amizadeh Y, et al. Cultivation of Retinoblastoma Cells: Correlation Between In Vitro Growth Pattern and Histopathology. J Ophthalmic Vis Res. 2016;11(4):379-384.
16. Bhavsar D, Subramanian K, Sethuraman S, Krishnan UM. Management of retinoblastoma: opportunities and challenges. Drug Deliv. 2016;23(7):2488-2496.
17. Dyer MA. Lessons from Retinoblastoma: Implications for Cancer, Development, Evolution, and Regenerative Medicine. Trends Mol Med. 2016;22(10):863–876.
18. Lombardo D, Kiselev MA, Caccamo MT. Smart Nanoparticles for Drug Delivery Application: Development of Versatile Nanocarrier Platforms in Biotechnology and Nanomedicine. J Nanomater. 2019;(12):1-26
19. Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36-48.
20. Danhier F, Ansorena E, Silva JM, et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505-522.
21. Bayón-Cordero L, Alkorta I, Arana L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. Nanomaterials (Basel). 2019;9(3):474.
22. Alharbi HM, Campbell RB. Nano-formulations composed of cell membrane-specific cellular lipid extracts derived from target cells: physicochemical characterization and in vitro evaluation using cellular models of breast carcinoma. AAPS Open. 2018;4:5.
23. Serpe L, Guido M, Canaparo R, et al. Intracellular accumulation and cytotoxicity of doxorubicin with different pharmaceutical formulations in human cancer cell lines. J Nanosci Nanotechnol. 2006;6(9-10):3062-3069.
24. Silva AM, Martins-Gomes C, Coutinho TE, et al. Soft cationic nanoparticles for drug delivery: production and cytotoxicity of solid lipid nanoparticles (SLNs). Appl Sci. 2019;9(20):4438.
25. Mohammed MA, Syeda JTM, Wasan KM, et al. An Overview of Chitosan Nanoparticles and Its Application in Non-Parenteral Drug Delivery. Pharmaceutics. 2017;9(4):53.
26. Ross JF, Chaudhuri PK, Ratnam M. Differential regulation of folate receptor isoforms in normal and malignant tissues in vivo and in established cell lines. Physiologic and clinical implications. Cancer. 1994;73(9):2432-2443.
27. Parveen S, Sahoo SK. Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma. Cancer Nano. 2010;1:47-62.
28. Delrish E, Jabbarvand M, Ghassemi F, et al. Efficacy of topotecan nanoparticles for intravitreal chemotherapy of retinoblastoma. Experimental Eye Research. 2021;204:108423. doi:10.1016/j.exer.2020.108423
29. Padhi S, Mirza MohdA, Verma D, et al. Revisiting the nanoformulation design approach for effective delivery of topotecan in its stable form: an appraisal of its in vitro Behavior and tumor amelioration potential. Drug Delivery. 2016;23(8):2827-2837. doi:10.3109/10717544.2015.1105323
30. Betancourt T, Byrne JD, Sunaryo N, et al. PEGylation strategies for active targeting of PLA/PLGA nanoparticles. J Biomed Mater Res A. 2009;91(1):263-27
31. Boddu S, Jwala J, Chowdhury M, et al. In vitro evaluation of a targeted and sustained release system for retinoblastoma cells using Doxorubicin as a model drug. J Ocul Pharmacol Ther. 2010;26(5):459–468.
32. Zhuang H, Xu YN, Zheng HH, et al. Carboplatin-loaded surface modified-PLGA nanoparticles confer sustained inhibitory effect against retinoblastoma cell in vitro. Arq Bras Oftalmol. Published online February 14, 2022. doi:10.5935/0004-2749.20220075
33. Das M, Sahoo SK. Folate decorated dual drug loaded nanoparticle: role of curcumin in enhancing therapeutic potential of nutlin-3a by reversing multidrug resistance. PLoS One. 2012;7(3):32920.
34. Michaelis M, Rothweiler F, Klassert D, et al. Reversal of P-glycoprotein-mediated multidrug resistance by the murine double minute 2 antagonist nutlin-3. Cancer Res. 2009;69(2):416-421.
35. Bharti C, Nagaich U, Pal AK, et al. Mesoporous silica nanoparticles in target drug delivery system: A review. Int J Pharm Investig. 2015;5(3):124-133.
36. Yang P, Gai S, Lin J. Functionalized mesoporous silica materials for controlled drug delivery. Chem Soc Rev. 2012;41(9):3679-3698.
37. Gary-Bobo M, Mir Y, Rouxel C, et al. Multifunctionalized mesoporous silica nanoparticles for the in vitro treatment of retinoblastoma: drug delivery, one and two-photon photodynamic therapy. Int. J. Pharm. 2012;432(1-2):99-104.
38. Shome D, Kalita D, Jain V, et al. Carboplatin loaded polymethylmethacrylate nano-particles in an adjunctive role in retinoblastoma: an animal trial. Indian J Ophthalmol. 2014;62(5):585-589.
39. Kalita D, Shome D, Jain VG, et al. In vivo intraocular distribution and safety of periocular nanoparticle carboplatin for treatment of advanced retinoblastoma in humans. Am J Ophthalmol. 2014;157(5):1109-1115.
40. Ahmed F, Ali MJ, Kondapi AK. Carboplatin loaded protein nanoparticles exhibit improve anti-proliferative activity in retinoblastoma cells. Int J Biol Macromol. 2014;70:572-582.
41. Narayana RVL, Jana P, Tomar N, et al. Carboplatin- and Etoposide-Loaded Lactoferrin Protein Nanoparticles for Targeting Cancer Stem Cells in Retinoblastoma In Vitro. Invest Ophthalmol Vis Sci. 2021;62(14):13. doi:10.1167/iovs.62.14.13
42. Kondapi AK. Targeting cancer with lactoferrin nanoparticles: recent advances. Nanomedicine (Lond). 2020;15(21):2071-2083. doi:10.2217/nnm-2020-0090
43. Mitra M, Kandalam M, Verma RS, et al. Genome-wide changes accompanying the knockdown of Ep-CAM in retinoblastoma. Mol Vis. 2010;16:828-842.
44. Mitra M, Kandalam M, Rangasamy J, et al. Novel epithelial cell adhesion molecule antibody conjugated polyethyleneimine-capped gold nanoparticles for enhanced and targeted small interfering RNA delivery to retinoblastoma cells. Mol Vis. 2013;19:1029-1038.
45. Qu W, Meng B, Yu Y, et al. EpCAM antibody-conjugated mesoporous silica nanoparticles to enhance the anticancer efficacy of carboplatin in retinoblastoma. Mater Sci Eng C. 2017;76:646-651.
46. Gao R, Mitra RN, Zheng M, et al. Developing nanoceria-based pH-dependent cancer-directed drug delivery system for retinoblastoma. Adv Funct Mater. 2018;28(52):1806248.
47. Dhall A, Self W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants (Basel). 2018;7(8):97.
48. Jaisy S, Kanwar RK, Kanwar JR, Khetan V, Krishnakumar S. A Study of Gene Expression of Survivin, its Antiapoptotic Variants, and Targeting Survivin In Vitro for Therapy in Retinoblastoma. J Pediatr Hematol Oncol. 2016;38(7):230-242.
49. Gibson VP, Derbali RM, Phan HT, et al. Survivin silencing improved the cytotoxicity of carboplatin and melphalan in Y79 and primary retinoblastoma cells. Int J Pharm. 2020;589:119824.
50. Tabatabaei SN, Derbali RM, Yang C, et al. Co-delivery of miR-181a and melphalan by lipid nanoparticles for treatment of seeded retinoblastoma. J Control Release. 2019;298:177-185.
51. Makky A, Michel JP, Ballut S, et al. Effect of cholesterol and sugar on the penetration of glycodendrimeric phenylporphyrins into biomimetic models of retinoblastoma cells membranes. Langmuir. 2010;26(13):11145-11156.
52. Fliesler SJ. Cholesterol homeostasis in the retina: seeing is believing. J Lipid Res. 2015;56(1):1-4.
53. Puri A, Loomis K, Smith B, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523-580.
54. Kauffman KJ, Dorkin JR, Yang JH, et al. Optimization of Lipid Nanoparticle Formulations for mRNA Delivery in Vivo with Fractional Factorial and Definitive Screening Designs. Nano Letters. 2015;15(11):7300-7306.
55. Bosetti R, Jones SL. Cost-effectiveness of nanomedicine: estimating the real size of nano-costs. Nanomedicine (Lond). 2019;14(11):1367-1370. doi:10.2217/nnm-2019-013