Impulse Oscillometry Parameters in Childhood Asthma, Childhood Obesity and Childhood Obesity with Asthma

Main Article Content

Tassalapa Daengsuwan, MD Thitaya Sangsawang, MD

Abstract

Background: Monitoring of lung function is necessary to detect irreversible airway obstruction in both asthma and obesity. Impulse oscillometry (IOS), a novo non-invasive equipment, is increasing popularity to measure airway resistance in young children worldwide.


Aims:  To compare IOS parameters among Thai asthmatic children and Thai obese children with and without asthma.


Methods: A cross-sectional study was conducted in 120 participants, aged 4-15 years old. Forty children were in each group (asthma, obesity, and obesity with asthma). All volunteers were consented to measure airway resistance by IOS technique (Jaeger, Germany).


Results: Seventy-three percent of patients were male with the mean age at 8.8 + 2.61 years old. Mean X5 was found normal in childhood obesity (-0.13) when compared to children with asthma (-0.23) and obesity with asthma (-0.19) (p < 0.001 and 0.013 respectively). The cut-off value of X5, according to ROC curve, for predicting asthma in obese patients was -0.16 kPa/L/s with 70% sensitivity, 70% specificity and 70% accuracy (AUC= 0.69). However, with the bronchodilator effect (adjusted by duration of asthma control), we found significant higher percentage change of IOS parameters, including resonant frequency, area of reactance and R5-R20, in asthma (Fres -24.57 + 15.82, AX -58.28 + 13.37, R5-R20 -51.32 + 20.13) than in asthma with obesity (Fres -13.77 + 16.42, AX -43.35 + 21.4, R5-R20 -34.72 + 18.21), (p = 0.014, 0.004, 0.002 respectively).


Conclusions: X5 and percentage changes after bronchodilator of Fres, AX, and R5-R20 are useful parameters to differentiate airway dysfunction in asthmatic children from obese children.

Keywords: Impulse oscillometry, asthma, obesity, lung function, respiratory impedance

Article Details

How to Cite
DAENGSUWAN, Tassalapa; SANGSAWANG, Thitaya. Impulse Oscillometry Parameters in Childhood Asthma, Childhood Obesity and Childhood Obesity with Asthma. Medical Research Archives, [S.l.], v. 10, n. 7, july 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2892>. Date accessed: 22 jan. 2025. doi: https://doi.org/10.18103/mra.v10i7.2892.
Section
Research Articles

References

1. Kudo M, Ishigatsubo Y, Aoki I. Pathology of asthma. Front Microbiol. 2013;4:263. Published 2013 Sep 10. doi:10.3389/fmicb.2013.00263
2. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2020. https://ginasthma.org/wp-content/uploads/2020/06/GINA-2020-report_20_06_04-1-wms.pdf. Accessed June 20, 2020.
3. Stern J, Pier J, Litonjua AA. Asthma epidemiology and risk factors. Semin Immunopathol. 2020;42(1):5-15. doi:10.1007/s00281-020-00785-1
4. Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol. 2018;141(4):1169-1179. doi:10.1016/j.jaci.2018.02.004
5. Dixon AE, Holguin F, Sood A, et al. An official American thoracic society workshop report: Obesity and asthma. Proc Am Thorac Soc. 2010;7(5):325-335. doi:10.1513/pats.200903-013ST
6. Manion AB. Asthma and Obesity. The Dose Effect. Nurs Clin North Am. 2013;48(1):151-158. doi:10.1016/j.cnur.2012.12.002
7. Mohanan S, Tapp H, Mcwilliams A, Dulin M. Obesity and asthma: Pathophysiology and implications for diagnosis and management in primary care. Exp Biol Med. 2014;239:1531-1540. doi:10.1177/1535370214525302
8. Myers TR, Tomasio L. Asthma: 2015 and beyond. Respir Care. 2011;56(9):1389-1407. doi:10.4187/respcare.01334
9. Quinto KB, Zuraw BL, Poon KYT, Chen W, Schatz M, Christiansen SC. The association of obesity and asthma severity and control in children. J Allergy Clin Immunol. 2011;128(5):964-969. doi:10.1016/j.jaci.2011.06.031
10. Batmaz SB, Kuyucu S, Arikoglu T, Tezol O, Aydogdu A. Impulse oscillometry in acute and stable asthmatic children: A comparison with spirometry. J Asthma. 2016;53(2):179-186. doi:10.3109/02770903.2015.1081699
11. Nielsen KG, Bisgaard H. Discriminative capacity of bronchodilator response measured with three different lung function techniques in asthmatic and healthy children aged 2 to 5 years. Am J Respir Crit Care Med. 2001;164(4):554-559. doi:10.1164/ajrccm.164.4.2006119
12. McDowell KM. Recent Diagnosis Techniques in Pediatric Asthma: Impulse Oscillometry in Preschool Asthma and Use of Exhaled Nitric Oxide. Immunol Allergy Clin North Am. 2019;39(2):205-219. doi:10.1016/j.iac.2018.12.002
13. Zeng J, Chen Z, Hu Y, Hu Q, Zhong S, Liao W. Asthma control in preschool children with small airway function as measured by IOS and fractional exhaled nitric oxide. Respir Med. 2018;145(October):8-13. doi:10.1016/j.rmed.2018.10.009
14. Tirakitsoontorn P, Crookes M, Fregeau W, et al. Recognition of the peripheral airway impairment phenotype in children with well-controlled asthma. Ann Allergy, Asthma Immunol. 2018;121(6):692-698. doi:10.1016/j.anai.2018.08.023
15. Ekström S, Hallberg J, Kull I, et al. Body mass index status and peripheral airway obstruction in school-age children: a population-based cohort study. Thorax. 2018;73(6):538-545. doi:10.1136/thoraxjnl-2017-210716
16. Assumpção MS d., Ribeiro JD, Wamosy RMG, Figueiredo FCXS d., Parazzi PLF, Schivinski CIS. Impulse oscillometry and obesity in children. J Pediatr (Rio J). 2018;94(4):419-424. doi:10.1016/j.jped.2017.06.007
17. Asher MI, Keil U, Anderson HR, et al. International study of asthma and allergies in childhood (ISAAC): Rationale and methods. Eur Respir J. 1995;8(3):483-491. doi:10.1183/09031936.95.08030483
18. Desiraju K, Agrawal A. Impulse oscillometry: The state-of-art for lung function testing. Lung India. 2016;33(4):410-416. doi:10.4103/0970-2113.184875
19. Desai U, Joshi JM. Impulse oscillometry. Adv Respir Med. 2019;87(4):235-238. doi:10.5603/ARM.a2019.0039
20. Komarow HD, Skinner J, Young M, et al. A Study of the Use of Impulse Oscillometry in the Evaluation of Children With Asthma: Analysis of Lung Parameters, Order Effect, and Utility Compared With Spirometry. Pediatr Pulmonol. 2012;47:18-26. doi:10.1002/ppul.21507
21. de Oliveira Jorge PP, de Lima JHP, Chong e Silva DC, Medeiros D, Solé D, Wandalsen GF. Impulse oscillometry in the assessment of children’s lung function. Allergol Immunopathol (Madr). 2019;47(3):295-302. doi:10.1016/j.aller.2018.03.003
22. Cottini M, Licini A, Lombardi C, Bagnasco D, Comberiati P, Berti A. Small airway dysfunction and poor asthma control: a dangerous liaison. Clin Mol Allergy. 2021;19(1):1-10. doi:10.1186/s12948-021-00147-8
23. Uysal P, Anik A, Anik A. School-age obese asthmatic children have distinct lung function measures from lean asthmatics and obese children. J Asthma. 2021;0(0):1-12. doi:10.1080/02770903.2021.1959925
24. Lauhkonen E, Koponen P, Nuolivirta K, et al. Obesity and bronchial obstruction in impulse oscillometry at age 5-7 years in a prospective post-bronchiolitis cohort. Pediatr Pulmonol. 2015;50(9):908-914. doi:10.1002/ppul.23085
25. Zammit C, Liddicoat H, Moonsie I, Makker H. Obesity and respiratory diseases. Am J Clin Hypn. 2011;53(4):335-343. doi:10.2147/IJGM.S11926
26. Jones RL, Nzekwu MMU. The effects of body mass index on lung volumes. Chest. 2006;130(3):827-833. doi:10.1378/chest.130.3.827
27. Forno E, Weiner DJ, Mullen J, et al. Obesity and airway dysanapsis in children with and without asthma. Am J Respir Crit Care Med. 2017;195(3):314-323. doi:10.1164/rccm.201605-1039OC
28. Savushkina O, Cherniak A, Kameneva M, Kryukov E, Zaytsev A. Impulse oscillometry in restrictive respiratory diseases. Eur Respir Journa. Published online 2018:PA3394. doi:10.1183/13993003.congress-2018.pa3394
29. de Albuquerque CG, de Andrade FMD, Rocha MA de A, et al. Determining respiratory system resistance and reactance by impulse oscillometry in obese individuals. J Bras Pneumol. 2015;41(5):422-426. doi:10.1590/S1806-37132015000004517
30. Cottini M, Licini A, Lombardi C, Berti A. Clinical Characterization and Predictors of IOS-Defined Small-Airway Dysfunction in Asthma. J Allergy Clin Immunol Pract. 2020;8(3):997-1004.e2. doi:10.1016/j.jaip.2019.10.040